Problems with operational semantics

- Too coarse (big-step)
- Syntax is part of the rules of inference, not separated
- Non-uniform language – logic (for rules) and functions (for model of program state)
- Denotational uses pure sets and functions
- Axiomatic use pure logic

Program state in axiomatic semantics

- Implicit model through constraints on values of variables
- Constraint = assertion
- E.g. \(x = 1 \) instead of \([x \mapsto 1] \)
- Also inequalities: \(x > 1 \)
- Assertions can annotate a program by putting constraints on program state
Annotations

- \{a_{initial}\}P(a_{final})
- P is the program code
- a's are assertions
- Often a_{initial} is empty (always true)
- a_{final} is the specification of the program, i.e. what the program is intended to do

Example final assertion

- Imagine x_0,x_1,…x_{n-1} are elements of an array, and total is a variable that starts out at 0
- The assertion \(\text{total} = \sum x_i \) is the specification
- The initial assertion might be \{ x_0 = 5 \land x_i = 12 \land \cdots \}
- Can we relate these with the actual program code?

Joining syntax and semantics

- We can say that if a_{initial} is true before the program starts, and a_{final} is true afterwards, then P must connect them
- In logic: \(a_{initial} \land \text{terminates}(P) \Rightarrow a_{final} \)
- How do we know that the implication is true?
- We can try to prove it, using the rules of logic
Proofs and problems

- To prove the implication, we need to break down the program into its constituent commands and write assertions about each intermediate program state.
- Axioms will help us deal with the simple command types (assignment, sequence, conditional, loop).
- Even if we know the implication to be true, we may not be able to find a proof.
- If we make the wrong assertions, or write the code badly, then it may be unproveable.

Requirements for the method

- A language for assertions (logic + arithmetic).
- A systematic way to break down the program (abstract syntax).
- A proof technique using axioms and rules of inference (sometimes called natural deduction).