CS571

- Notes 06N
- Operational semantics of commands

Semantics of commands

- Abstract syntax
 \[C ::= \text{nop} \mid I := E \mid C_1;C_2 \mid \text{if } B \text{ then } C_1 \text{ else } C_2 \text{ end} \mid \text{while } B \text{ do } C \text{ end} \]
 - A command, unlike an expression, changes the state
 - General scheme:
 \[[C, \sigma] \rightarrow \sigma' \]
 - The relation is a different one from the evaluation relation

Semantics of assignment

- Rules
 - Nop: \[\text{nop}, \sigma \rightarrow \sigma \]
 - Assignment:
 \[\begin{align*}
 [E, \sigma] & \rightarrow \nu \\
 [I := E, \sigma] & \rightarrow [I \mapsto \nu] \sigma
 \end{align*} \]
 - The store function \(\sigma \) is changed so that the identifier \(I \) is paired with the value of the expression \(E \)
Semantics of the sequence

- Rule:
 \[[C_1, \sigma] \rightarrow \sigma' \quad [C_2, \sigma'] \rightarrow \sigma'^* \]
 \[[C_1; C_2, \sigma] \rightarrow \sigma'^* \]
- The sequencing comes from the store in the “middle” - \(\sigma'^* \)

Semantics of the conditional

- Conditional needs two rules, one for each branch:
 \[[B, \sigma] \rightarrow \text{true} \quad [C_1, \sigma] \rightarrow \sigma' \]
 \[[B, \sigma] \rightarrow \text{false} \quad [C_2, \sigma] \rightarrow \sigma'^* \]
 \[\text{if } B \text{ then } C_1 \text{ else } C_2, \sigma \rightarrow \sigma' \quad \text{if } B \text{ then } C_1 \text{ else } C_2, \sigma \rightarrow \sigma'^* \]
- The result will be a different store depending on the branch taken

Problem with the loop

- Problem: loops are iterative, but we have no language (logic, sets, etc.) with that property – we must use recursion
- The basic idea is that the loop continues by executing the body and then repeating the whole loop again until the exit test is false:

 * while B do C end == C;while B do C end
Semantics of the loop

- Rule is:

 \[
 \begin{align*}
 [B, \sigma] & \rightarrow \text{true} \quad [C; \text{while } B \text{ do } C \text{ end}, \sigma] \rightarrow \sigma' \\
 [\text{while } B \text{ do } C \text{ end}, \sigma] & \rightarrow \sigma'
 \end{align*}
 \]

- Simpler is (expanding the sequence)

 \[
 \begin{align*}
 [B, \sigma] & \rightarrow \text{true} \quad [C, \sigma] \rightarrow \sigma'' \quad [\text{while } B \text{ do } C \text{ end}, \sigma''] \rightarrow \sigma' \\
 [\text{while } B \text{ do } C \text{ end}, \sigma] & \rightarrow \sigma'
 \end{align*}
 \]

Semantics of the loop - termination

- Rule for termination is

 \[
 [B, \sigma] \rightarrow \text{false} \quad [\text{while } B \text{ do } C \text{ end}, \sigma] \rightarrow \sigma
 \]

- The store is unchanged when the test is false

An example program

- Program is multiplication using repeated addition:

 \[
 X := 2; \\
 Y := 3; \\
 M := 0; \\
 \text{while } X \text{ greater } 0 \text{ do} \\
 M := M + Y; \\
 X := X - 1 \\
 \text{end}
 \]
Working the rules

- Split the program into two: the assignment sequence and the loop itself
- Initial store is \(\sigma_0 \) (could be empty)
- Do each assignment separately:

 \[
 \begin{align*}
 [2, \sigma] \rightarrow 2 & \quad [3, \sigma] \rightarrow 3 \\
 [X := 2, \sigma] \rightarrow [X := 2] \sigma & \quad [Y := 3, \sigma] \rightarrow [Y := 3] \sigma \\
 [0, \sigma] \rightarrow 0 & \quad [M := 0, \sigma] \rightarrow [M := 0] \sigma
 \end{align*}
 \]

Sequencing

- Put these three in a sequence with:

 \[
 \sigma_1 = [X \mapsto 2] \sigma \text{ and } \sigma_2 = [Y \mapsto 3] \sigma
 \]

- Then:

 \[
 \begin{align*}
 [2, \sigma] \rightarrow 2 & \quad [3, \sigma] \rightarrow 3 \\
 [X := 2, \sigma] \rightarrow \sigma & \quad [Y := 3, \sigma] \rightarrow \sigma \\
 [0, \sigma] \rightarrow 0 & \quad [M := 0, \sigma] \rightarrow \sigma
 \end{align*}
 \]

Handling the loop

- The basic scheme has as many "unfolding" of the loop as necessary, with termination (when the test is false) at the top

 \[
 \begin{align*}
 [0, \sigma] \rightarrow \text{true} & \quad [C, \sigma] \rightarrow \sigma' \\
 [B, \sigma'] \rightarrow \text{true} & \quad [C, \sigma'] \rightarrow \sigma' \quad [\text{while B do C end} \sigma'] \rightarrow \sigma
 \end{align*}
 \]

- Work bottom-up, not top-down
The loop body

- For our program:

\[
\begin{align*}
&M, \sigma^n
\rightarrow \sigma^n(M) \\
&Y, \sigma^n \rightarrow \sigma^n(Y) \\
&X, \sigma^n \rightarrow \sigma_{\text{init}}(X) \\
&\lfloor 1/\sigma_{\text{init}} \rfloor + 1 \\
&M := M \text{ plus } Y, \sigma^n \rightarrow \sigma_{\text{init}} \\
&\lfloor X := X \text{ minus } 1, \sigma_{\text{init}} \rfloor \rightarrow \sigma^n.
\end{align*}
\]

- This will do for iteration of the loop – the \(m \)th time, where:

\[
\sigma_{\text{init}} := \lfloor M \mapsto \sigma^n(M) \rfloor, \sigma^n(Y) \] and \(\sigma^n(\lfloor X := X \text{ minus } 1, \sigma_{\text{init}} \rfloor) \rightarrow \sigma^n.\]

Putting it all together

- We can work bottom-up
- The stores are:

\[
\begin{align*}
\sigma^n_0 & = \lfloor M \mapsto 0 \rfloor, \lfloor Y \mapsto 3 \rfloor, \lfloor X \mapsto 2 \rfloor \sigma_0 \\
\sigma^n_1 & = \lfloor M \mapsto 3 \rfloor, \lfloor X \mapsto 1 \rfloor \sigma^n_0 \\
\sigma^n_2 & = \lfloor M \mapsto 0 \rfloor, \lfloor X \mapsto 0 \rfloor \sigma^n_0
\end{align*}
\]

- which is, in fact, \(\sigma_{\text{init}} \), because, in the next iteration, \(X \text{ greater } 0 \) is false

Summary

- Operational semantics can handle assignment, evaluation of expressions, and even loops through recursive unfolding
- It can even be used for making inferences about programs in general