“Compiling” a program

- Instead of expressing the denotation as a result (from \(\text{Nat}\)) we can express it as a function of \(n \in \text{Nat}\).

\[
P[Z := 1; \text{if } A = 0 \text{ then diverge; } Z := 3] \overset{\lambda n.\text{let } s = \text{update } [A] n \text{ newstore in}}{=} \text{let } s' = E \text{ in}
\]

Where \(E = C[Z := 3; C[\text{if } A = 0 \text{ then diverge}]](C[Z := 1])\).

- i.e.

\[
(\lambda s.\text{update } [Z] \text{ three } s)(\lambda s.\text{access } [A] s) \text{ equals zero} \rightarrow (\lambda s.\bot) s
\]

Simplify to:

\[
\lambda n.\text{let } s' = \text{let } s_3 = (\text{access } [Z] s') \text{ in}
\]

\[
\text{update } [Z] \text{ three } s_3 \text{ in }
\]

A more readable version

- Convert strict lambdas to lets (same property of strictness)

\[
P[Z := 1; \text{if } A = 0 \text{ then diverge; } Z := 3] \overset{\lambda n.\text{let } s = \text{update } [A] n \text{ newstore in}}{=} \text{let } s' = \text{let } s_3 = \text{let } s_2 = \text{let } s_1 = s \text{ in}
\]

\[
\text{update } [Z] \text{ three } s_3 \text{ in }
\]

\[
\text{access } [Z] s
\]

We can use (by extensionality of functions):

\[
\text{let } s = (e_1 \rightarrow \bot) s_2 \text{ in } s_3 \text{ is the same as } e_2 \rightarrow \bot s_2
\]

to simplify further
Final simplification

- \(\lambda n. \text{let } s' = (n \text{ equals zero } \rightarrow \bot) \) in access \([Z] s'\)
- We can apply the same simplification again:
- \(\lambda n. n \text{ equals zero } \rightarrow \bot \) in access \([Z] (\text{update } [Z] \text{ three } s_2)\)
- Finally:
- \(\lambda n. n \text{ equals zero } \rightarrow \bot \) in update \([Z] \text{ three } s_2\)
- Here all identifiers have been optimized away; stores have been used where they are proper (not bottom); the final result is very intuitive as to the core meaning of the program

Proving program properties

- If two denotations are equal, then the two programs with those denotations are equivalent
- Since denotations can be functions, we need to show that two functions are the same
- Use extensionality principle:
 - If \(f \ x = g \ x \) for all \(x \), then \(f \) and \(g \) are the same function

Program equivalence example

- Prove:
- \(X := 0; Y := X + 1 \) and \(Y := 1; X := 0 \) are equivalent
- We can do this if:
- \([P][X := 0; Y := X + 1] \) and \([P][Y := 1; X := 0] \) are the same function

These two are different functions, but are extensionally equivalent because they produce the same result for \(X \) (zero) and for \(Y \) (one) and for any other argument \(I \) (all)