Quantifiers in First Order Logic

List of Logical Equivalences

- \(p \land T \iff p \) (Identity Laws)
- \(p \lor F \iff p \) (Identity Laws)
- \(p \lor T \iff T \) (Domination Laws)
- \(p \land F \iff F \) (Domination Laws)
- \(p \lor p \iff p \) (Idempotent Laws)
- \(p \land p \iff p \) (Idempotent Laws)
- \(\neg(\neg p) \iff p \) (Double Negation Law)
- \(p \lor q \iff q \lor p \) (Commutative Laws)
- \(p \land q \iff q \land p \) (Commutative Laws)
- \((p \lor q) \lor r \iff p \lor (q \lor r) \) (Associative Laws)
- \((p \land q) \land r \iff p \land (q \land r) \) (Associative Laws)
- \(p \lor q \iff q \lor p \) (Commutative Laws)
- \(p \land q \iff q \land p \) (Commutative Laws)
- \((p \lor q) \lor r \iff p \lor (q \lor r) \) (Associative Laws)
- \((p \land q) \land r \iff p \land (q \land r) \) (Associative Laws)

List of Equivalences

- \(p \lor (q \land r) \iff (p \lor q) \land (p \lor r) \) (Distribution Laws)
- \(p \land (q \lor r) \iff (p \land q) \lor (p \land r) \) (Distribution Laws)
- \(\neg(p \lor q) \iff \neg p \land \neg q \) (De Morgan's Laws)
- \(\neg(p \land q) \iff \neg p \lor \neg q \) (De Morgan's Laws)
- \(p \lor \neg p \iff T \) (Or Tautology)
- \(p \land \neg p \iff F \) (And Contradiction)
- \((p \land q) \land r \iff (p \land q) \land r \) (Implication Equivalence)
- \((p \lor q) \lor r \iff (p \lor q) \lor r \) (Implication Equivalence)
- \((p \land q) \land r \iff p \land (q \land r) \) (Biconditional Equivalence)
- \((p \lor q) \lor r \iff (p \lor q) \lor r \) (Biconditional Equivalence)

The Proof Process

- **Assumptions**
- **Logical Steps**
 - Definitions
 - Already-proved equivalences
 - Statements (e.g., arithmetic or algebraic)
- **Conclusion**
 - (That which was to be proved)

Predicate Calculus: Quantifiers

Universe of Discourse, U: The domain of a variable in a propositional function.

Universal Quantification of \(P(x) \) is the proposition: “\(P(x) \) is true for all values of \(x \) in \(U \).”

Existential Quantification of \(P(x) \) is the proposition: “There exists an element, \(x \), in \(U \) such that \(P(x) \) is true.”

Prove: \((p \land \neg q) \lor q \iff p \lor q \)

\((p \land \neg q) \lor q \iff \) \(q \lor (p \land \neg q) \) \(\iff \) Left-Hand Statement
\(q \lor (p \land \neg q) \iff \) \(q \lor (p \land \neg q) \) \(\iff \) Commutative
\(q \lor (p \land \neg q) \iff \) \((q \lor p) \land q \lor (q \lor p) \) \(\iff \) Distributive
\((q \lor p) \land q \lor (q \lor p) \iff \) \((q \lor p) \land q \lor (q \lor p) \) \(\iff \) Or Tautology
\((q \lor p) \land q \lor (q \lor p) \iff \) \(q \lor p \) \(\iff \) Identity
\(q \lor p \iff \) \(q \lor p \) \(\iff \) Commutative
\(q \lor p \iff \) \(q \lor p \) \(\iff \) Commutative

Begin with exactly the left-hand side statement
End with exactly what is on the right
Justify EVERY step with a logical equivalence
Universal Quantification of $P(x)$

$\forall x P(x)$

“for all x $P(x)$”

“for every x $P(x)$”

Defined as:

$P(x_0) \land P(x_1) \land P(x_2) \land P(x_3) \land \ldots \text{ for all } x_i \text{ in } U$

Example:

Let $P(x)$ denote $x^2 \geq x$

If U is x such that $0 < x < 1$ then $\forall x P(x)$ is false.

If U is x such that $1 < x$ then $\forall x P(x)$ is true.

Existential Quantification of $P(x)$

$\exists x P(x)$

“there is an x such that $P(x)$”

“there is at least one x such that $P(x)$”

“there exists at least one x such that $P(x)$”

Defined as:

$P(x_0) \lor P(x_1) \lor P(x_2) \lor P(x_3) \lor \ldots \text{ for all } x_i \text{ in } U$

Example:

Let $P(x)$ denote $x^2 \geq x$

If U is x such that $0 < x \leq 1$ then $\exists x P(x)$ is true.

If U is x such that $x < 1$ then $\exists x P(x)$ is true.

Quantifiers

$\forall x P(x)$

• True when $P(x)$ is true for every x.

• False if there is an x for which $P(x)$ is false.

$\exists x P(x)$

• True if there exists an x for which $P(x)$ is true.

• False if $P(x)$ is false for every x.

Negation (it is not the case)

$\neg \exists x P(x)$ equivalent to $\forall x \neg P(x)$

• True when $P(x)$ is false for every x

• False if there is an x for which $P(x)$ is true.

$\neg \forall x P(x)$ is equivalent to $\exists x \neg P(x)$

• True if there exists an x for which $P(x)$ is false.

• False if $P(x)$ is true for every x.

Examples 2a

Let $T(a,b)$ denote the propositional function “a trusts b.” Let U be the set of all people in the world.

Everybody trusts Bob.

$\forall x T(x, Bob)$

Could also say: $\forall x \in U \ T(x, Bob)$

\in denotes membership

Bob trusts somebody.

$\exists x T(Bob, x)$

Examples 2b

Alice trusts herself.

$T(Alice, Alice)$

Alice trusts nobody.

$\forall x \neg T(Alice, x)$

Carol trusts everyone trusted by David.

$\forall x (T(David, x) \rightarrow T(Carol, x))$

Everyone trusts somebody.

$\forall x \exists y T(x, y)$
Quantification of Two Variables
(read left to right)

∀x∀yP(x,y) or ∀y∀xP(x,y)
• True when P(x,y) is true for every pair x,y.
• False if there is a pair x,y for which P(x,y) is false.

∃x∃yP(x,y) or ∃y∃xP(x,y)
True if there is a pair x,y for which P(x,y) is true.
False if P(x,y) is false for every pair x,y.

Examples 3a
Let L(x,y) be the statement “x loves y” where U for both x and y is the set of all people in the world.
Everybody loves Jerry.
∀xL(x,Jerry)

Everybody loves somebody.
∀x ∃yL(x,y)

There is somebody whom everybody loves.
∃y ∀xL(x,y)

Examples 3b1
There is somebody whom Lydia does not love.
∃x ¬L(Lydia,x)

Nobody loves everybody. (For each person there is at least one person they do not love.)
∀x ∃y ¬L(x,y)

There is somebody (one or more) whom nobody loves.
∃y ∀x ¬L(x,y)