
Assignment 4

The Denotational Semantics of Scope
Resolution
Sample Answer
First, we annotate the program�s different sections (which happen to be regions of scope):

program A;
begin var x; k1
 proc C;
 begin k2
 x = 2
 end;
 proc B;
 begin var x; k3
 x = 1;
 call C
 end;
 x = 0;
 call B
end

The derivation is obtained by following the valuations functions as follows:

1. M�program A; k1�
2. = M�k1�s0 e0
3. = M�x=0;call B�s0 (M�proc C; k2 proc B; k3�e0)

We work on the environment first:

4. M�var x; proc C; k2 proc B; k3�e0
5. = M�proc C; k2 proc B; k3�(M�var x�e0)

The variable declaration gives an environment

6. updateenv(e0, �x�, l0), where l0 is the unique location returned by next_locn(). So
e1 = {(x, l0)}. The declaration of the procedures gives an environment:

7. M�proc C; k2 proc B; k3�e1
8. = M�proc B; k3� (M�proc C; k2�e1)

The declaration of C gives e2:

9. updateenv(e1, �C�, λs.M�k2�s e1)

So e2 = {(x, l0), (C, λs.M�k2�s e1)}. Back to step 8:

10. = M�proc B; k3� e2
11. = updateenv(e2, �B�, λs.M�k3�s e2)

Call this e3, where e3 has C mapped to the function that executes C�s body with
environment e2, and B mapped to the function that executes B�s body with environment
e1, and x is mapped to l0. i.e. e3 = {(x, l0), (C, λs.M�k2�s e1), (B, λs.M�k3�s e2)}

Back to step 3:

12. = M�x=0;call B�s0 e3
13. = M�call B� (M�x=0�s0 e3) e3

The execution of x=0 is:

14. = M�x=0�s0 e3
15. = update(s0, acccessenv(e3, �x�), M�0�)

Call this s1, where s1 maps l0 to the value 0. i.e. s1 = {(l0, 0)}. Back to step 14:

16. = M�call B�s1 e3
17. = ((accessenv(e3, �B�) s1)

Thus we are applying the function mapped to B in e3 to the store s1 in which l0 is mapped
to 0.

18. = M�k3�s1 e2

Note that the environment is the one stored when the declaration environment was
updated, i..e. it is the one in which x is mapped to l0, and C is declared as well. We have
not yet executed B�s body, so its declaration of x is not yet in force.

19. = M�x=1; call C�s1 (M�var x�e2)

The new environment, call it e4, has x mapped to l1 instead of l0. This is �shadowing� of a
variable declared in an outer environment. i.e. e4 = {(x, l1), (C, λs.M�k2�s e1)}. So:

20. = M�x=1; call C�s1 e4, where e4 maps x to l1
21. = M�call C� (M�x=1�s1 e4) e4

The execution of x=1 gives a store s2

22. = update(s1, accessenv(e4, �x�), M�1�)

i.e. l1 is mapped to 1 in s2. s2 = {(l0, 0), (l1, 1)} The call to C is then:

23. = M�call C�s2 e4
24. = ((accessenv(e4, �C�) s2)
25. = M�k2�s2 e1

Note again the C�s environment (e1) is the one stored with the function when it was
declared. It only contains a mapping for x to l0.

26. = M�x=2�s2 e1
27. = update(s2, accessenv(e1, �x�), M�2�)
28. = {(l0, 2), (l1, 1)}

Since s2 contains l0 mapped to 0 and l1 mapped to 1, and e1 contains a mapping from x to
l0, it is l0 that is updated to 2, not l1. This is static scoping. Dynamic scoping can be
obtained by storing a function of both store and environment when a procedure is
declared, and applying this function, when the procedure is called, to the store and the
environment at the point of call. This will change the value for l1 instead of for l0.

	Assignment 4
	The Denotational Semantics of Scope Resolution
	Sample Answer

