Assignment 4
The Denotational Semantics of Scope
Resolution

Sample Answer

First, we annotate the program’s different sections (which happen to be regions of scope):

program A;

begin var x; K1
proc C;
begin | k>
x=2
end;
proc B;
begin var X; | k3
x=1;
call C
end;
x=0;
call B
end

The derivation is obtained by following the valuations functions as follows:

1. M[program A; k]
2. = Mﬂkl]]S() €0
3. =M[x=0;call B]so (M[proc C; k, proc B; ks]eo)

We work on the environment first:

4. Mfvar x; proc C; k; proc B; k;leo
5. =M]proc C; k; proc B; ks[(M[var x]eo)

The variable declaration gives an environment
6. updateenv(e, [x], lo), where 1y is the unique location returned by next locn(). So
e1 = {(x, lp)}. The declaration of the procedures gives an environment:
7. M[proc C; k, proc B; ksJe;
8. =M]proc B; ks3] M[proc C; kiJer)

The declaration of C gives e;:



9. updateenv(ey, [C], As.M[k]s €)

So e, = {(x, lp), (C, As.M[ka]s e1)}. Back to step 8:
10. = M[proc B; ks3] e;
11. = updateenv(e,, [B], As.M[ks]s €2)

Call this e3, where e; has C mapped to the function that executes C’s body with
environment e, and B mapped to the function that executes B’s body with environment
e1, and x is mapped to ly. i.e. e3 = {(X, lp), (C, As.M[k[s €1), (B, As.M[ks]s €2)}

Back to step 3:
12. = M[[x=0;call B]s, €3
13. = M[call B]] M[x=0]so €3) €3

The execution of x=0 is:
14. = MHXZO]]S() €3
15. = update(so, acccessenv(es, [x])), M[0])

Call this s;, where s; maps ly to the value 0. i.e. s; = {(lp, 0)}. Back to step 14:
16. = M[[0all B]]S] €3
17. = ((accessenv(es, [B]) s1)

Thus we are applying the function mapped to B in e; to the store s; in which 1y is mapped
to 0.
18. = M|Ik3]]51 (%)

Note that the environment is the one stored when the declaration environment was
updated, i..e. it is the one in which x is mapped to 1y, and C is declared as well. We have
not yet executed B’s body, so its declaration of x is not yet in force.

19. = M[[x=1; call C]s; (M]var x]ey)

The new environment, call it e4, has x mapped to I; instead of ly. This is “shadowing” of a
variable declared in an outer environment. i.e. es= {(x, 1)), (C, As.M[kz]s e)}. So:

20. = M[[x=1; call CJls; e4, where e; maps x to 1,

21.= MIIC&“ C]] (MHXZI]]& 64) €4

The execution of x=1 gives a store s,
22. = update(s;, accessenv(es, [x]), M[1])

i.e. I; is mapped to 1 in s5. s, = {(lo, 0), (11, 1)} The call to C is then:
23.= M[[0all C]]Sz €4
24. = ((accessenv(es, [C]) s2)
25.= MIIkz]]Sz €1



Note again the C’s environment (e;) is the one stored with the function when it was
declared. It only contains a mapping for x to l.

26. = MHXZZ]]Sz (S5
27. = update(s,, accessenv(ey, [x]), M[2])
28.= {(lo, 2), (i, D)}

Since s, contains Iy mapped to 0 and 1; mapped to 1, and e; contains a mapping from x to
lo, it is Iy that is updated to 2, not ;. This is static scoping. Dynamic scoping can be
obtained by storing a function of both store and environment when a procedure is
declared, and applying this function, when the procedure is called, to the store and the
environment at the point of call. This will change the value for |; instead of for .



	Assignment 4
	The Denotational Semantics of Scope Resolution
	Sample Answer


