Assignment 4

The Denotational Semantics of Scope Resolution

Sample Answer

First, we annotate the program’s different sections (which happen to be regions of scope):

```plaintext
program A;
begin
  var x;
prom C;
  begin
    x = 2
  end;
prom B;
  begin
    var x;
    x = 1;
call C
  end;
x = 0;
call B
end
```

The derivation is obtained by following the valuations functions as follows:

1. \[M[\text{program } A; \text{k}_1] \]
2. \[= M[\text{k}_1]s_0 e_0 \]
3. \[= M[x=0; \text{call B}]s_0 (M[\text{proc } C; \text{k}_2 \text{ proc } B; \text{k}_3]e_0) \]

We work on the environment first:

4. \[M[\text{var x; proc } C; \text{k}_2 \text{ proc } B; \text{k}_3]e_0 \]
5. \[= M[\text{proc } C; \text{k}_2 \text{ proc } B; \text{k}_3](M[\text{var x}]e_0) \]

The variable declaration gives an environment

6. \text{updateenv}(e_0, [x], l_0), where \(l_0 \) is the unique location returned by next_locn(). So \(e_1 = \{(x, l_0)\} \). The declaration of the procedures gives an environment:

7. \[M[\text{proc } C; \text{k}_2 \text{ proc B; k}_3]e_1 \]
8. \[= M[\text{proc B; k}_3](M[\text{proc } C; \text{k}_2]e_1) \]

The declaration of \(C \) gives \(e_2 \):
9. \text{updateenv}(e_1, [C], \lambda s.M[k_2]s e_1)

So \(e_2 = \{(x, l_0), (C, \lambda s.M[k_2]s e_1)\}\). Back to step 8:

10. = M[[\textbf{proc }B; k_3]] e_2
11. = \text{updateenv}(e_2, [B], \lambda s.M[k_3]s e_2)

Call this \(e_3\), where \(e_3\) has \(C\) mapped to the function that executes \(C\)’s body with environment \(e_2\), and \(B\) mapped to the function that executes \(B\)’s body with environment \(e_1\), and \(x\) is mapped to \(l_0\). i.e. \(e_3 = \{(x, l_0), (C, \lambda s.M[k_2]s e_1), (B, \lambda s.M[k_3]s e_2)\}\)

Back to step 3:

12. = M[x=0; \textbf{call } B][s_0] e_3
13. = M[[\textbf{call } B]](M[x=0][s_0] e_3) e_3

The execution of \(x=0\) is:

14. = M[x=0][s_0] e_3
15. = \text{update}(s_0, \text{accessenv}(e_3, [x]), M[[0]])

Call this \(s_1\), where \(s_1\) maps \(l_0\) to the value 0. i.e. \(s_1 = \{(l_0, 0)\}\). Back to step 14:

16. = M[[\textbf{call } B]][s_1] e_3
17. = ((\text{accessenv}(e_3, [B])) s_1)

Thus we are applying the function mapped to \(B\) in \(e_3\) to the store \(s_1\) in which \(l_0\) is mapped to 0.

18. = M[k_3][s_1] e_2

Note that the environment is the one stored when the declaration environment was updated, i.e. it is the one in which \(x\) is mapped to \(l_0\), and \(C\) is declared as well. We have not yet executed \(B\)’s body, so its declaration of \(x\) is not yet in force.

19. = M[x=1; \textbf{call } C][s_1] (M[var x][e_2])

The new environment, call it \(e_4\), has \(x\) mapped to \(l_1\) instead of \(l_0\). This is “shadowing” of a variable declared in an outer environment. i.e. \(e_4 = \{(x, l_1), (C, \lambda s.M[k_2]s e_1)\}\). So:

20. = M[x=1; \textbf{call } C][s_1] e_4, where \(e_4\) maps \(x\) to \(l_1\)
21. = M[[\textbf{call } C]](M[x=1][s_1] e_4) e_4

The execution of \(x=1\) gives a store \(s_2\)

22. = \text{update}(s_1, \text{accessenv}(e_4, [x]), M[[1]])

i.e. \(l_1\) is mapped to 1 in \(s_2\). \(s_2 = \{(l_0, 0), (l_1, 1)\}\). The call to \(C\) is then:

23. = M[[\textbf{call } C]][s_2] e_4
24. = ((\text{accessenv}(e_4, [C])) s_2)
25. = M[k_2][s_2] e_1
Note again the C’s environment (e_1) is the one stored with the function when it was declared. It only contains a mapping for x to l_0.

26. $= M[x=2]s_2 e_1$
27. $= \text{update}(s_2, \text{accessenv}(e_1, [x]), M[2])$
28. $= \{(l_0, 2), (l_1, 1)\}$

Since s_2 contains l_0 mapped to 0 and l_1 mapped to 1, and e_1 contains a mapping from x to l_0, it is l_0 that is updated to 2, not l_1. This is static scoping. Dynamic scoping can be obtained by storing a function of both store and environment when a procedure is declared, and applying this function, when the procedure is called, to the store and the environment at the point of call. This will change the value for l_1 instead of for l_0.