CS471, Programming Language Structure I

Sample answer to Assignment 3, Fall 2002

The syntax is altered with the addition of a multiple assignment statement. This can be done recursively:

```
S ::= Ilist = Elist | ...
Ilist ::= I | I,Ilist
Elist ::= E | E,Elist
```

There is no way in BNF to specify an equal number of Is and Es.
There are no new domains needed, except that there must be operations for processing a list. These are head and tail:
head(I,Ilist) $=\mathrm{I}$
tail $(\mathrm{I}, \mathrm{Ilist})=$ Ilist
the new valuation function for the multiple assignment is then:

$$
\begin{aligned}
M \llbracket \text { Ilist }=\text { Elist } \rrbracket \mathrm{s}= & \text { if tail(Ilist }) \text { is empty then } M \llbracket \text { head(Ilist })=\text { head(Elist }) \rrbracket \mathrm{s} \\
& \text { else } M \llbracket \text { tail(Ilist })=\operatorname{tail}(\text { Elist }) \rrbracket(M \llbracket \text { head }(\text { Ilist })=\text { head(Elist }) \rrbracket s)
\end{aligned}
$$

Note that this executes the tails of the lists in the store returned by executing the head. Thus the assignment:

$$
x, y=4, x
$$

will first change x to 4 , and then change y to 4 , the new value of x . It also assumes that there are an equal number of Is and Es in the two lists. To do "parallel" assignment, in which the store does not change for each assignment:
$\mathrm{M} \llbracket$ Ilist $=$ Elist $\rrbracket \mathrm{s}=\mathrm{M} \llbracket$ Ilist $=$ Elist $\rrbracket \mathrm{s} \mathrm{s}$
$\mathrm{M} \llbracket \mathrm{Il}$ list $=$ Elist $\rrbracket \mathrm{s}_{0} \mathrm{~s}_{1}=$ if Ilist is empty then s_{1}

$$
\text { else } \mathrm{M} \llbracket \operatorname{tail}(\mathrm{Ilist})=\operatorname{tail}(\text { Elist }) \rrbracket \mathrm{s}_{0}\left(\mathrm{M} \llbracket \operatorname{head}(\mathrm{Ilist})=\text { head }(\text { Elist }) \rrbracket \mathrm{s}_{0}\right)
$$

In this version, the original store, s_{0} remains fixed, but the changes are accumulated in a second store, s_{1}.

Either version is a correct answer to the problem.

