
Assignment 3 

Modifying a denotational semantic definition 
Goals 
To read a denotational definition of a simple imperative language, and to modify it to add 
a new feature. 

Procedure 
Take the following abstract syntax definition of a language, and its denotational 
semantics and augment the syntax and semantics to allow for the multiple assignment 
statement type found in BCPL, and other languages. 
 

Abstract Syntax: 
P ::= S 
S ::= I = E | S1;S2 | if B then S1 else S2 end | 
      while B do S end 
B ::= I == E | I > E | I < E | 
      B1 or B2 | B1 and B2 | not B 
E ::= N | I | E1 + E2 | E1 – E2 

 
Semantic domains: 
Z (the integers, with addition, subtraction and comparison operations) 
I ∈ Id (identifiers) 
s ∈ Store: Id → Z (update operation a ) 
B = {true, false} (operations and, or not) 
 
Semantics (valuation functions): 
M�N� = n, where n∈Z (integers) 
M�I�s = s(I) 
M�E1 + E2�s = M�E1�s + M�E2�s 
M�E1 - E2�s = M�E1�s - M�E2�s 
M�I==E�s = true if s(I) = M�E}s else false 
M�I > E�s = true if s(I) > M�E�s else false 
M�I < E�s = true if s(I) < M�E�s else false 
M�B1 or B2� s= true if one or both of M�B1�s and M�B2�s is true else false 
M�B1 and B2�s = false if one of M�B1�s and M�B2�s is false else true 
M�not B�s = true if M�B�s is false else true 
M�I=E�s = s[I a M�E�s] 
M�S1;S2�s = M�S2�(M�S1�s) 
M�if B then S1 else S2 end�s = M�S1�s if M�B�s = true else M�S2�s 
M�while B do S end�s = M�S; while B do S end�s if M�B�s is true else s 



Hints 
 Add a new statement type to the abstract syntax to handle any number of 

identifiers and the same number of expressions. For instance: 
x,y,z = 1,2,3 

will assign 1 to x, 2 to y and 3 to z. Can the syntax specifiy that the number of 
expressions should equal the number of identifiers? 

 Add a meaning function or functions that map your new syntax to the appropriate 
functional forms. You will have to solve the problem of processing the sequence 
of identifiers (and expressions) in a functional manner. Typically this is done with 
two operations on a list – head which returns the first item in the list, and tail 
which returns everything else except the first item. Recursion then handles the list 
one item at a time. Don’t try to use an iterative solution since the functional world 
of lambda calclus doesn’t have any iteration. 

Grading 
Total 30 points. Partial credit will be available for answers that are along the right lines. 

Due Date 
September 30th. by 5:00pm. 


	Assignment 3
	Modifying a denotational semantic definition
	Goals
	Procedure
	Hints
	Grading
	Due Date


