Assignment 3

Modifying a denotational semantic definition

Goals

To read a denotational definition of a simple imperative language, and to modify it to add a new feature.

Procedure

Take the following abstract syntax definition of a language, and its denotational semantics and augment the syntax and semantics to allow for the multiple assignment statement type found in BCPL, and other languages.

Abstract Syntax:

```
P ::= S
S ::= I = E | S S; S | | if B then S S else S S end |
    while B do S end
B ::= I == E | I > E | I < E |
    B}\mp@subsup{B}{1}{}\mathrm{ or }\mp@subsup{B}{2}{}|\mp@subsup{B}{1}{}\mathrm{ and }\mp@subsup{B}{2}{}|\mathrm{ not }
E ::=N | I | E P + E E | E E - E E
```

Semantic domains:
Z (the integers, with addition, subtraction and comparison operations)
$\mathrm{I} \in \mathrm{Id}$ (identifiers)
$\mathrm{s} \in$ Store: $\mathrm{Id} \rightarrow \mathrm{Z}$ (update operation \mapsto)
$B=\{$ true, false $\}$ (operations and, or not)
Semantics (valuation functions):
$\mathrm{M} \llbracket \mathrm{N} \rrbracket=\mathrm{n}$, where $\mathrm{n} \in \mathrm{Z}$ (integers)
$\mathrm{M} \llbracket \mathrm{I} \rrbracket \mathrm{s}=\mathrm{s}(\mathrm{I})$
$\mathrm{M} \llbracket \mathrm{E}_{1}+\mathrm{E}_{2} \rrbracket \mathrm{~s}=\mathrm{M} \llbracket \mathrm{E}_{1} \rrbracket \mathrm{~s}+\mathrm{M} \llbracket \mathrm{E}_{2} \rrbracket \mathrm{~s}$
$M \llbracket E_{1}-E_{2} \rrbracket s=M \llbracket E_{1} \rrbracket s-M \llbracket E_{2} \rrbracket s$
$\mathrm{M} \llbracket \mathrm{I}==\mathrm{E} \rrbracket \mathrm{s}=$ true if $\mathrm{s}(\mathrm{I})=\mathrm{M} \llbracket \mathrm{E}\}$ s else false
$M \llbracket I>E \rrbracket s=$ true if $s(I)>M \llbracket E \rrbracket s$ else false
$M \llbracket I<E \rrbracket s=$ true if $s(I)<M \llbracket E \rrbracket s$ else false
$M \llbracket B_{1}$ or $B_{2} \rrbracket s=$ true if one or both of $M \llbracket B_{1} \rrbracket s$ and $M \llbracket B_{2} \rrbracket s$ is true else false
$M\left[B_{1}\right.$ and $B_{2} \rrbracket s=$ false if one of $M \llbracket B_{1} \rrbracket s$ and $M \llbracket B_{2} \rrbracket s$ is false else true
$M \llbracket$ not $B \rrbracket s=$ true if $M \llbracket B \rrbracket s$ is false else true
$\mathrm{M} \llbracket \mathrm{I}=\mathrm{E} \rrbracket \mathrm{s}=\mathrm{s}[\mathrm{I} \mapsto \mathrm{M} \llbracket \mathrm{E} \rrbracket \mathrm{s}]$
$\mathrm{M} \llbracket \mathrm{S}_{1} ; \mathrm{S}_{2} \rrbracket \mathrm{~s}=\mathrm{M} \llbracket \mathrm{S}_{2} \rrbracket\left(\mathrm{M} \llbracket \mathrm{S}_{1} \rrbracket \mathrm{~s}\right)$
$M \llbracket$ if B then S_{1} else S_{2} end $\rrbracket s=M \llbracket S_{1} \rrbracket s$ if $M \llbracket B \rrbracket s=$ true else $M \llbracket S_{2} \rrbracket s$
$\mathrm{M} \llbracket$ while B do S end $\rrbracket \mathrm{s}=\mathrm{M} \llbracket \mathrm{S}$; while B do S end $\rrbracket \mathrm{s}$ if $\mathrm{M} \llbracket \mathrm{B} \rrbracket \mathrm{s}$ is true else s

Hints

- Add a new statement type to the abstract syntax to handle any number of identifiers and the same number of expressions. For instance:

$$
x, y, z=1,2,3
$$

will assign 1 to $\mathrm{x}, 2$ to y and 3 to z . Can the syntax specifiy that the number of expressions should equal the number of identifiers?

- Add a meaning function or functions that map your new syntax to the appropriate functional forms. You will have to solve the problem of processing the sequence of identifiers (and expressions) in a functional manner. Typically this is done with two operations on a list - head which returns the first item in the list, and tail which returns everything else except the first item. Recursion then handles the list one item at a time. Don't try to use an iterative solution since the functional world of lambda calclus doesn't have any iteration.

Grading

Total 30 points. Partial credit will be available for answers that are along the right lines.

Due Date

September $30^{\text {th }}$. by $5: 00 \mathrm{pm}$.

