
OPERATIONAL SEMANTICS 

The style of operational semantics we shall study is that developed by Plotkin and Kahn 
(who called it natural semantics). The language is defined by a set of inference rule. A 
computation is then defined by a finite proof tree built from the inference rules. Each rule is 
developed and applied by examining the syntax of the program and using the appropriate one. 
Thus the semantics of the language are devloped from the syntax by choosing the correct 
sequence of inference rules. 

BIG-STEP SEMANTICS 

We are going to use inference rules for whole syntactic forms, such as expressions, 
statements etc. Each rule will be a big step, in contrast with a compiler�s small steps involving 
instructions on a real machine. This style of semantics is also possible, but we will not use it 
here. In order to handle variables and their values, we will need a finite function called store that 
maps variable identifiers to values. We will meet this concept again in the denotational style of 
semantics. Any program has a finite number of identifiers, so the function is finite. We will write 
it as: 

1 2[x , y ]v v! ! …  
where x and y are identifiers (i.e. part of the syntax of the program) and are 

values taken from some set (possibly infinite) of values. This store of values is always present in 
any inference rule, since it is assumed to be true at all times. We could write:  

1 2andv v

[x 1, y 2] x+y! ! ! Ø3  

where ! means if the expression on the right-hand side is true, then the expression on the right-
hand side follows as true also. The whole thing then reads �in the case that x maps to 1 and y 
maps to 2 in the store, then it follows that x+y evaluates to 3�. We will miss out the �turnstile� 
and its left-hand side, assuming that the store function is always present. 
 

INFERENCE RULES 

The semantics of a language will be presented as a set of inferences rules on the values contained 
in ths store, and the particular language form in question. Each rules has the following form: 

( )1 2 side conditionsnP P P
C
#  

The Ps are judgements (premises or assumptions) and C is a single judgement (conclusion). If 
the premises are true (assumed or proved), then the conclusion is also true. If there are no 
premises, then the rule is an axiom: 

 
C

 

The side conditions often express constraints that the language of premises and conlcusions (i.e. 
logic) cannot. They also must be true for the rule to be applicable. 
 



DERIVATIONS OR PROOF TREES 

A derivation or proof tree whose root is a conclusion and whose subtrees are derivations of its 
premises. Each subtree is handled similarly. Eventually the leaves of the tree are either empty (as 
they are in axioms) or assumptions for the whole tree. Ecah of these derivations must be finite. 
This will be especially important in the case of programs with loops. A typical proof tree  might 
be: 
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C11 is the overall conclusion that depends on three subtrees. The left subtree is a conclusion C3 
that depends on premises P1 and P2, the middle subtree is just a premise P4, and the right subtree 
has a conclusion C10 that, in turn, depends on P5, P9 and a conclusion C8 that depends on P6 and 
P7. Such a proof tree will express the meaning of a program and also act to show how the 
program produces a final result, given a set of initial values of the variables in the store. 

GETTING THE STORE INTO THE RULES  

The store represents the program state, or the context in which expressions are evaluated 
(and commands executed). Evaluation (or execution) will be represented as a relation on the set 

, i.e the set of pairs which have the set of pairs consisting of a piece of 
syntax and the store function as its left-hand part, and a value as its right. The syntax comes from 
the abstract syntax of the language, and every alternative on the right hand side of every rule will 
needs an inference rule.  

( )Syntax  Store Value× ×

INFERENCE RULES FOR EXPRESSIONS  

The simplest rule is an axiom for constants, which evaluate to the values they denote: 

 ( )the value of N
[N, ]

n
nσ

=
→

 

Since there is nothing above the line, there are no conditions on the truth of the relational 
statement on the bottom. This is read as N evaluates to n in the store σ. We can omit the line in 
this case: 

( )[N, ] the value of Nn nσ → =  

Technically N is a numeral (i.e. syntax) whereas n is a value (i.e. semantics). The �side� 
condition in parentheses is the way we shall add extra meaning to the inference rule that cannot 
be expressed in the rule itself. 

Next are simple variables: 

 
[I, ] (I)σ σ→

 

 



Again, since there is nothing above the line, there are no conditions on the truth of the 
bottom line. It is always true that x evaluates to store(I).  

Arithmetic expressions follow naturally: 

 1 2

1 2

[E , ] [E , ]
[E plus E , ]

u v
u v

σ σ
σ

→ →
→ +

 

 
Note the distinction between syntax ( ) and semantics ( ). We are 

explaining the meaning of the plus operator in terms of the addition operation on values, denoted 
as + in the rule. We can do the same thing for the other arithmetic operators. 

1E  plus E2 u v+

Relational expressions are similar, but evaluate to true or false. We need two rules for 
one. E.g. for equality: 

(1 2

1 2

[E , ] [E , ]
[E  equal E , ]

u u u v
true

)σ σ
σ

→ →
=

→
 and ( )1 2

1 2

[E , ] [E , ]
[E  equal E , ]

u v u v
false

σ σ
σ

→ →
≠

→
 

The rules for greater than and less than are very similar: 

(1 2

1 2

[E , ] [E , ]
[E  greater E , ]

u v u v
true

)σ σ
σ

→ →
>

→
 and ( )1 2

1 2

[E , ] [E , ]
[E  greater E , ]

u v u v
false

σ σ
σ

→ →
≤

→
 

and similarly for less than. 

INFERENCE RULES FOR COMMANDS 

Commands (or statements) are not evaluated like expressions, but are executed. What 
does this mean in the context of operational semantics? The answer will be used again in 
denotational semantics: what a command does is two really two things. First, it has a side a 
effect; it changes program state. In Operational terms, it changes the store function. So the basic 
form of the evaluation realtion used for expressions is modified to include the store as the 
�value� of the command: 

 [ ]C,σ σ ′→  
In other words, when a command is executed, it alters the store. The second thing that 

commands do is to take part in control, sequence, conditional and the loop. We can see this in the 
abstract syntax: 

C ::= nop | I := E | C1;C2 | if B then C1 else C2 end | while B do C end 
The second alternative is the state-altering form, assignment. The third is sequencing of 

commands (the recursion gives us any number of commands in a sequence). The fourth is the 
conditional and the fifth is the loop. All of these potentially alter the state. The first alternative, 
the no-operation, does not, of course. Let us start there. The inference rule for nop is: 

 [ ]nop,σ σ→  
It clearly does nothing.  

Assignment needs the function update form: 



 [ ]
[ ] [ ]

E,
I:=E, I

u
u

σ
σ σ

→
→ !

 

The result of carrying out an assignment of I to the value of E, in the store σ, is a new 
function in which I maps to u, theresult of evaluating E in the same store. If I already maps to 
some value in σ, then the new value overrides that, as demonstrated in the section on updating 
functions. This is precisely what we need for the semantics of assignment. We have used the 
power of mathematical abstractions to model the operation of assignment.  

The sequence has the rule: 

  

 [ ] [ ]
[ ]

1 2

1 2

C , C ,
C ;C ,

σ σ σ
σ σ

σ′ ′ ′→ →
′′→

′
 

This rule shows how the result of executing one statement serves as the store for 
executing the next in the sequence. The overall result is that the sequence C1;C2 acts just like a 
single command, albeit a compound. 

The conditional, as expected, needs two rules: 

 [ ] [ ]
[ ]

1

1 2

B, C ,
if B then C  else C  end

trueσ σ σ
σ
′→ →
′→
 and [ ] [ ]

[ ]
2

1 2

B, C ,
if B then C  else C  end

falseσ σ σ
σ
′→ →
′→
 

These rules show that only one of the two commands C1 and C2 is executed, depending 
on the evaluation of the Boolean B. The resultant store is for the whole conditional form 
whichever store comes from the execution of the command. 

We have left the loop rule until last because it is the most interesting, and the most 
problematic. None of the languages we have looked at for representation (logic, sets, functions 
etc.) have the notion of looping in them. We are obliged, as we will be in denotational semantics, 
to use recursion to handle looping. There is one form of recursion, however, that we do have and 
that is in the abstract syntax. We can use this to good effect here. Essentially we will say that 
executing a while loop when the exit condition is true is just like execting the body of the loop 
and then doing the whole thing again; i.e. while B do C end is (if B is true) C;while B do C end. 
When the condition becomes false, the body is not executed, so there is no change. The rule 
follows: 

 [ ] [ ]
[ ]

B, C;while B do C end,
while B do C end,
trueσ σ σ

σ σ
′→ →

′→
 

Actually it is easier to write it out with three premises since the sequence will have to be 
expanded anyway. 

 [ ] [ ] [ ]
[ ]

B, C, while B do C end,
while B do C end,

trueσ σ σ σ σ
σ σ

′′ ′→ →
′→

′ ′→
 

The rule when B is false is: 

 [ ]
[ ]

B,
while B do C end,

falseσ
σ σ

→
→

 



showing that the store is unchanged. 

EXAMPLE DERIVATION FOR A WHOLE PROGRAM 

We will show the inference rules at work for the following simple program that 
multiplies two numbers by reapeated addition. We will meet this little program again, which, 
although it is unnecessary in a language that already has multiplication, it is simple enough to 
show all the parts of the method at work. The program is: 

X := 2; 
Y := 3; 
M := 0; 
while X greater 0 do 
     M := M plus Y; 
     X := X minus 1 
end 

We would like to show that at the end of execution, M has the value 6 and X has the 
value 0, because the loop has terminated. 

Since the three initial assignments are simple, we have the following: 

 [ ]
[ ] [ ]

[ ]
[ ] [ ]

[ ]
[ ] [ ]

0 1 2

0 0 1 1 2

2, 2 3, 3 0, 0
, ,

X:=2, X 2 Y:=3, Y 3 M:=0, M 0
σ σ σ

2σ σ σ σ σ
→ →

→ → →! ! σ
→
!

 

We need to use the sequence rule to put these together: 

 

[ ]
[ ] [ ]

[ ]
[ ] [ ]

[ ] [ ][ ]
[ ]

[ ] [ ]
[ ] [ ][ ][ ]

0 1

0 0 1 1 2

0 0 2

0 0

2, 2 3, 3
X:=2, X 2 Y:=3, Y 3 0, 0

X:=2;Y:=3, Y 3 X 2 M:=0, M 0
X:=2;Y:=3;M:=0, M 0 Y 3 X 2

σ σ
σ σ σ σ σ

2σ σ σ
σ σ

→ →
→ →

→ →
→

! !
! ! !

! ! !
σ

→

 

since we must have [ ] [ ][ ]1 0 2X 2  and Y 3 X 2 0σ σ σ= =! ! σ! for the rules to work. 
σ0 is the initial store which is empty. 

Let us set [ ][ ][ ] 0M 0 Y 3 X 2inσ σ= ! ! ! , the store for the loop. The body can be 
handled first in a top-down fashion, but since we are going to have to execute it several times, we 
will make it generic: 

 
[ ] ( ) [ ] ( )
[ ] ( ) ( )

[ ] ( ) ( )

[ ] ( ) [ ]
[ ] ( )

[ ] ( )
[ ] ( )

M, M Y, Y X, X 1, 1
M plus Y, M Y X minus 1, X 1

M:=M plus Y, M M Y X:=X minus 1, X X 1
M:=M plus Y;X:=X minus 1, X X 1

in in in in in in in

in in in in in

in in in in in in in

in in in

σ σ σ σ σ σ σ
σ σ σ σ σ

σ σ σ σ σ σ
σ σ σ

′ ′ ′→ → → →
′ ′→ + → −

σ′ ′ ′→ + →⎡ ⎤ ⎡⎣ ⎦ ⎣
′ ′→ −⎡ ⎤⎣ ⎦

! !
!

− ⎤⎦

 
where ( ) ( )M M Yin in in inσ σ σ′ = +⎡ ⎤⎣ ⎦! σ . 



The final store is then 

( ) ( )( )( ) ( ) ( )X M M Y X 1 M M Yin in in in in inσ σ σ σ σ⎡ ⎤+ − +⎡ ⎤ ⎡⎣ ⎦ ⎣⎣ ⎦! ! ! σ⎤⎦ in terms of the store 

going into the loop. 

Unfortunately, the loop itself conccot be handled top-down, since, in general, we don�t 
know how many times it will iterate. So we will build it bottom up, using stores that we will 
either calculate asa we go, or that we will have to leave until the end of the loop. The general 
scheme is: 

 

[ ] [ ]
[ ] [ ] [ ]

[ ]
[ ]

,

, ,
while B do C end,

, ,
while B do C end,

while B do C end,

n
in

in in in
in out

in in in
in out

in out

B false

B true C
B true C

σ

σ σ σ
σ σ

σ σ σ
σ σ

σ σ

⎡ ⎤ →⎣ ⎦

′ ′ ′′→ →
′′ →

′→ →
′ →

→

$

 
Eventually, as we move up the page, there will be no need for a premise with the body, since the 
Boolean expression will evaluate to false. Starting with the final conclusion, we know σin, so we 
can write the premises 

 [ ] [ ]
[ ] ( ) [ ] 3

X, 2 0, 0
2 0)  and M:=M+Y;X:=X-1,

X greater 0,
in in

in
in true

σ σ
σ σ

σ
→ →

> →
→

 

where [ ][ ]X 1 M 3in inσ σ′ = ! ! using the formula we derived for executing the body. 
Now we can do the whole loop again to calualate inσ ′′ , since 

[ ]inX greater 0, trueσ ′ → (1>0). Executing the body gives us [ ][ ]X 0 M 6in inσ σ′′ ′= ! ! . Now we 

have [ ]X greater 0, in falseσ ′′ → , so we can use the exit form of the while rule, and the derivation 
, or proof, is finished.  

SUMMARY 

We have achieved two things here. One is that we can use this technique to derive the 
results of a computation purely by applying logical rules through matching of syntactc forms. 
We do not need a real machine, and we do not need to translate our language into another one, or 
build a virtual machine in any language. The other is that we have proved that the program 
produces the result that it does since our methods are based on well-understood and reliable 
techniques from mathematics. A nice side result is that we have also proved that the program 
terminates, at least in this case. Showing that the program terminates for all positive X and Y is 
harder. We will see how to do that when we study axiomatic semantics. 
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