Object-Oriented Languages: from struct to class

The explosive rise of the object-oriented languages really began with Bjorn Stroustrup’s C++, although
the concept of representing objects in programs had been around since the 70’s. The archetypal O-O language is
Smalltalk, developed by the visionaries at Xerox PARC in the 70’s. It remains as the purest version of the O-O
paradigm, so we study it for its use of the three main aspects of O-O languages that make then different from
the imperative languages. They are:

1. Encapsulation
2. Inheritance
3. Polymorphism

We will study these, first from the older but purer, Smalltalk, angle, and then using C++, with a little
Java thrown in. First, though, let us briefly describe these and give a model of computation for this group of
languages. Encapsulation is the ability to group variables together in a unit that can then be treated as a single
entity. We can also encapsulate procedures and/or functions, and other language elements. Inheritance enables
types to be related by the sub-type relation and then properties of sub-types to be inherited — basically reused
without rewriting — from their super-types. Polymorphism is the ability to maker certain operations independent
of the type of object they operate on. All of these three major aspects will be motivated as the solution to a
particular problem that the simpler imperative languages have. All three will be extended to include more
capabilities than mentioned above, giving the languages more power, but also more room for abuse. By abuse
we simply mean that a programmer uses the language in ways that the designers never thought of.

ENCAPSULATION

Niklaus Wirth’s Pascal was an attempt to address the central issue with the state of programming at the
time; programmers should be able to build programs where variables, procedures and functions can be
optionally protected from access by ‘rogue’ procedures, i.e. procedures that should not be accessing tat
information. So, Pascal can solve the following problem. Assume that two C procedures (void functions) are
communicating a value through a non-local variable:

int x;

void f£() {
x = 1;

} f

void g () { \\

printf ("%d", x);

aQ

Here, fand g are using x to communicate a value. We could of course us parameters and pointers as
well:



void f(int *x) {

*x = 1; L
} main /
void g(int x) {

printf ("%d", x); X a
} N g
main () { \\\\\\\\

int x; A

f(&x);

g(x);

}
Here, main keeps the variable x and controls everything. If this intended to go to another level, say, in f,

then we could write:
void p(int *y) {
*y = 1;
}

void g(int y) | )
printf ("%d", y): main f

}

void f (int *x) {
int y; \\\\\\
p(&y); l \/\
aly):

: X = yi g p q

o ' / \

void g(int x) {

printf ("%d", x);

}

main () {
int x;
f(&x);
g(x);
}
Now f does what main does at the top level — control the use of a variable, y. We cannot achieve the

same result with global variables without possible confusion between the two:

int x, vy, void g () {
printf ("%d", x);
void p() A }
y = 1;
} main () {
£0);
void g() { g();
printf ("sd", y); }
} X y

;{():- . f E /!
AN 71N




In either case, the problem is one of indiscriminate access. We cannot stop the programmer calling p

from main, or g from f, indeed we can call anything from anywhere. The simple two-level scope is incapable of
helping. The Pascal solution is nested procedures:

program P;

var x, y : integer;
procedure f();
var y : integer;
procedure p() {
begin P
y = 1;
end; f
procedure g(); X I
begin T
write (y) y
end

eeo = 1; g p / \ q
AN

end;
procedure g{();
begin
write (x);
end;
begin

or

program P;
var x : integer;
procedure f (var xp : integer);
var y : integer;
procedure p(var y : integer) {
begin
y = 1;
end;
procedure g(y : integer);
begin
write (y)
end
begin
(y)s
(v)
p

X Q T

I~

y
end;

procedure g(x : integer);
begin
write (x);
end;
begin

end.

However, again there is nothing to stop me writing a ‘rogue’ procedure h at the level of fand g, or r at
the level of p and q, that can interfere with the careful control of the use of variables x and y.



MODULES

The solution that Wirth came up with is the concept of encapsulating f and g along with their shared
variable x, and also encapsulating p and q with their variable y. Modula2 and the succession of languages
leading to Ada can do something like this (not exact syntax):

module fg; module pqg;
import p, g from pg; export p, g;
var x : integer; var y : integer;
procedure f(); procedure p();
begin begin
pa.p(); y =1
pa.g(); end;
x =1 procedure g();
end; begin
procedure g{(); write (y);
begin end;
write (x); begin
end; /* nothing here */
begin end.
£0;
gQ);
end.
fo pPq
X y

/] N /

Note the use of the module name to call procedures encapsulated in that module, and, more importantly,
the import/export statements that allows module fg to access procedures in pq. Now we have control over who
gets access to variable y. fand g have no access to y directly, and p and q have no access to x directly.
Furthermore, if we add procedures to modules fg and/or pq, as long as their names are not exported, the other
modules cannot call them. The parameter version, where y is still local to f, is:



module fg;

var x : integer;
procedure f(var x : integer);
var y : integer;
begin
Pa.p(y);
Pa.q(y);
X 1=y
end;
procedure g(x : integer);
begin
write (x);
end;
begin
f(x);
g(x);
end.
fg
X
f ~ g
X X
y P 4—/

module pqg;

begin

end.

Pq

export p, g9;
procedure p(var y :
begin

y =1

integer);

end;
procedure g(y :
begin

write (y);

integer);

end;

/* nothing here */

INSTANTIATION — AN OBJECT IS AN INSTANCE OF A CLASS

The package in Ada is the encapsulation mechanism. Anything can be encapsulated in a package —

variables, procedures, functions, and, in particular, types. If a type and its operations (implemented as functions
and procedures) are encapsulated, then we have an Abstract Data Type. Instances of the type are then variables
which can be operated on by the functions and procedures. Types can also be based on other pre-defined types,
and these types can inherit the capability of these ‘base’ types through the use of the type’s ‘primitive’
functions. However, the full use of inheritance only comes about if we identify the encapsulation as defining a
type. This is what C++, and, later, Java have done through the notion of a class. In Ada, types are separate from
the encapsulation mechanism; in C++ and Java, they are the same mechanism.

Thus we come to the instantiation of a class which relates an object of the type defined by the class.

struct point {

}i

float x;
float y;

Stroustrup, in fact, reinvented this from Smalltalk, which was, in turn, developed from a simulation language
called Simula-67. It is natural to think of a type as being an encapsulation, instead of being encapsulated, and
the success of C++ and Java have proved this, although there are many other features that contributed to their
success. If we start with the struct in C, we can see how this was done. A C struct is an encapsulation that
defines a type:

This can be used by declaring a variable of this type, and using procedures and/or functions to operate



struct point pl, p2;

point translate (struct point p, float dx,

p.x +=
p.y =
return
}
pl.x = 10.2;
pl.y = 21.1;

dx;
dy;
i<

p2 = translate(pl, 2.7, 3.1);

The problem here is that there is no access control on how pl and p2 are to be used. It would be nice to
encapsulate the translate function inside the struct, and allowing the struct to govern who has access to what and
how. Stroustrup’s brilliant solution was to allow functions to be encapsulated and to introduce the notion of
access control as either private or public. The simple struct has open access — public — to everything inside it,
whereas the class encapsulation is exactly the opposite — everything is private. Of course an encapsulation that
doesn’t allow any access to its components is useless. The addition of the public and private keywords solved
this problem. We thus have the two extremes (everything public and everything private) and the generally
accepted good practice in between where all data (variables) are private and all operations (functions) are
public. In addition, he dropped the parameter of the class type the encapsulates it since all functions would be
passed the object on which they are operating. This is done by a hidden pointer parameter whose value is bound
to the keyword ‘this’. In the example, we return the object which is being operated on by dereferencing the

pointer this.

// everything public
struct point {

float
float
point

}i

X7

Y

translate (float dx, float dy)
X += dx;

y += dy;

return *this;

// everything private

class point
float
float
point

}i

{

X7

Y

translate (float dx, float dy)
X += dx;

y += dy;

return *this;

// private data, public functions

class point

private:
float
float

public:
point

{

X
Y

translate (float dx, float dy)
X += dx;

y += dy;

return *this;

float dy)

{

{



The advantage of private/public is that the we now have every kind of control over access; the
disadvantage is the we have too much variety. In fact, as we shall see, we can use this flexibility to good effect,
but beginners should always stick to the data private, operations public idea. This was the only kind of access
control possible in Smalltalk, and where access to date was necessary, accessor functions were introduced. In
C++, this is achieved by inspectors (read-only functions) and mutators (write-only):

class point {

private:
float x;
float y;
public:
point translate (float dx, float dy) {
X += dx;
y += dy;
return *this;
}
float getx() { return x; }
void putx (float newx) { x = newx; }

}i

In this example x can be changed inside an object (an instantiation of the class point), but y cannot:

point p;
float xx;

p.putx(5.6);

xx = p.getx()
p.translate (3
XX = p.gety()

.2, 4.5);
; // this is illegal since there is no such function in point

There remains one problem. If data is private, and there are no mutators, then how do we initialize the
data. On solution is to set every variable in an object to zero. A better idea, and the one that C++ uses, is to have
a public constructor function do the job. This function has two jobs. One is to actually allocate space for the
new object (the user has no control over this) and the other is to initialize the space. An example with our point
class might be, in fact, to set the variables to zero, but it could use any values. The constructor is not a true
function. It has the hidden jobs of space allocation, but it also returns the new object and thus there is no need to
specify a return type. Its name must also be the same as the class, and, to start with, it needs no parameters.
Such a function is the default constructor.

class point {

private:
float x;
float y;
public:
point() { x = yv = 0.0; } // the constructor - could set x and y to any value
point translate (float dx, float dy) {
p.x += dx;
p.y += dy;
return *this;
}
float getx() { return x; }
void putx (float newx) { x = newx; }

}i

So a more complete example of the use of this class is:

point pl, p2;

float xx;

xx = pl.getx(); // xx is now 0.0

pl.putx(3.2); // pl now has x = 3.2, y i1s still 0.0



p2 = pl;
p2.translate (
XX = p2.getx(

6,

7.

8)s

// P2 now has x
// P2 now has x

// xx 1s now 8.8

® W

@ N

~

~

LS

~ |l

o O



