
Functional Languages 

The Lambda Calculus 
Functional languages started as an implementation of the ideas in the lambda calculus. In 
the lambda calculus there are three basic types of expression: a variable, such as x or y, a 
function such as λx.x, where the body of the function is any expression, and an 
application which is just two expression one after the other, as in a b, or c d. With the 
addition of parentheses, we have a complete language based on simple substitution. It is 
usual to also allow arithmetic expression with infix operators, such as x + y. The 
application of a function to its arguments can be ‘reduced’ or made simpler by following 
the substitution rule. E.g. the expression: 
 ((λx.λy.x + y) 2) 3 
Reduces to 5 by first binding 2 to x and substituting to give λy.2 + y, and then binding 3 
to y an substituting to give 2 + 3, or 5. 
 

Functions as first class arguments 
The calculus does not care whether arguments to functions are values, like numbers, 
variables, like x, or functions. So the expression 
 ((λx.λf.f x) 2) (λy.y + 3) 
reduces to 
 (λf.f 2) (λy.y + 3) 
by binding 2 to x and substituting. If we now bind f to the function λy.y + 3, an 
substitute, we get 
 (λy.y + 3) 2 
which is 2 + 3, or 5. 
Functions may also return functions as values, as in the first reduction above. 

 (λx.λf.f x) 2 
Reduces to λf.f x. i.e. the function with parameter x returns the function with parameter f 
as a value. 
These properties of the lambda calculus, i.e. treating functions as first class values, is 
taken over by all functional languages.  
 

Eager evolution using pass-by-value 
Another property of the lambda calculus is that reductions can proceed by first reducing 
the argument. E.g. in 
 (λx.x + 2) ((λy.y + 1) 4) 
we first reduce the arguments to 4 +1, or 5, then apply λx.x + 2 to 5 to get 5 + 2, or 7. 
This style of reduction is carried over to functional languages as evaluation of arguments 
before binding their values to parameters. The mechanism used is pass-by-value. This is 
called eager evaluation. It is also possible to reduce the above expression by binding x 
directly to the argument. This gives 
 ((λy.y + 1) 4) + 2 



after substitution, which reduces to 7, as before. There is a theorem that says the two 
styles of reduction must give the same result, so there is a definite choice. The second 
style of reduction is lazy evaluation, which is a feature of some functional languages, and 
the mechanism used is pass-by-name. 

LISP, the first functional language 
John McCarthy and his students turned the lambda calculus into a language called LISP. 
They wrote an interpreter for the language which essentially carried out reduction using 
the ‘universal evaluator’ called eval. eval is a function that, when passed any expression 
in the language, returns its value. In LISP, all operations are represented in prefix form, 
so the last example would be written 
 ((lambda (x)  (+ x 2)) ((lambda (y) (+ y 1)) 4)) 
Notice the greek letter λ is replaced by the word lambda, and the function’s parameter is 
written in parentheses. Notice also that all applications must be surrounded by 
parentheses, e.g. (X Y) where X must be a function (or evaluate to a function) and Y is its 
argument. A sketch of the function eval is: 
 
 eval(exp) = 
                 if exp is a variable (such as x), return its binding 
                 if exp is a function (such as (lambda (x) x)), return it 
                 if exp is an application (such as (X Y), 

find the value of X by calling eval(X) (this should be a function), 
find the value of Y by calling eval(Y), 
bind the parameter of eval(X) to eval(Y), 
evaluate the body of function eval(X) with the new binding 

 
LISP’s model of computation is thus simply the valuation of expressions. There are no 
variables as in the imperative languages and there is no assignment. In fact, once a 
parameter has been bound to the value of its argument, it can never change. This means 
that the value of any expression is given by its form, since there are no hidden side effects 
caused by assignment. This property of functional languages is called ‘referential 
transparency’. 
 
In the full version of LISP, it is possible also to define functions by giving them a name 
(rather than just anonymous lambda expressions). This allows recursion since a function 
can then refer to itself by name. These functions can have any number of parameters, 
rather than just one as in the lambda calculus. The addition of a conditional form and 
some testing operations makes the language complete. Here is the factorial function, in 
LISP: 
 (defun factorial (n) 
                 (cond ((eq n 0) 1) 
                           (t (* n (factorial (- n 1))))) 
 
The conditional form is a pseudo-function (or ‘special’ function) that is handled specially 
by eval. It can have any number of ‘clauses’, each one consisting of an expression which 
acts as a test, and an expression to act as a return value. The first test in factorial is 



whether n, the parameter, equals 0. If these returns true, then the value of factorial is 1. If 
this test fails, the second clause is tried. Here the test is just the expression t, which, by 
definition, always evaluates to true, so it will always succeed. The value of factorial is 
then n times the value of factorial with n – 1 as the argument. A derivation of a particular 
expression can be given as a series of equalities: 
 (factorial 3) 
 = (* 3 (factorial (- 3 1))) 
 = (* 3 (factorial 2)) 
 = (* 3 (* 2 (factorial (- 2 1)))) 
 = (* 3 (* 2 (factorial 1))) 
 = (* 3 (* 2 (* 1 (factorial (- 1 1))))) 
 = (* 3 (* 2 (* 1 (factorial 0)))) 
 = (* 3 (* 2 (* 1 1))) 
 = 6 
Notice that this derivation gives the value of 3! At each step, just in a different form. This 
is referential transparency at work. 
 
In fact, we can even express the recursion in factorial without using recursion directly. 
LISP has a form that allows the temporary binding of a variable to a value called let. The 
syntax is: 

(let ((x e1)) e2) 
We can then express factorial as: 
      (defun factorial (n) 
     (let ((fact1 ‘(lambda (f n) (cond ((eq n 0) 1) (t (* n (f f (- n 1))))))) 
         (fact1 fact1 n))) 
In this function fact1 is bound to the lambda expression that computes factorial. 
However, the ‘recursive’ call in its body is in fact just calling the function passed through 
the parameter, and passing it also in the call. So the next call to f gets itself as an 
argument and also n reduced by 1. A sample derivation is: 
 (factorial 3) 
 = (fact1 fact1 3) 
 = (cond ((eq 3 0) 1) (t (* 3 (fact1 fact1 2)))) 
 = (* 3 (fact1 fact1 2)) 
 = (*3 (cond ((eq 2 0) 1) (t (* 2 (fact1 fact1 1))))) 
 = (* 3 (*2 (fact1 fact1 1))) 
 = (* 3 (* 2 (cond ((eq 1 0) 1) (t (* 1 (fact1 fact1 0)))))) 
 = (* 3 (* 2 (*1 (fact1 fact1 0)))) 
 = (* 3 (* 2 (* 1 (cond ((eq 0 0) 1) (t (* 0 (fact1 fact1 -1))))))) 
 = (* 3 (* 2 (* 1 1))) 
 = 6 
This derivation is the same as the recursive version, except for the extra parameter in the 
call. In lambda calculus form it is: 
 λn.((λg.g g n) (λf.λn.n=0→1 n*(f f n)) 
using a special form of the conditional for the lambda calculus. 
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