
A C++ DYNAMIC ARRAY

C++ does not have a dynamic array inbuilt, although it does have a template in the Standard Template
Library called vector which does the same thing. Here we define a dynamic array as a class, first to store
integers only, and then as a template to store values of any type.

First we define the required functions and operations:
class Dynarray {
private:
 int *pa; // points to the array
 int length; // the # elements
 int nextIndex; // the next highest index value
public:
 Dynarray(); // the constructor
 ~Dynarray(); // the destructor
 int& operator[](int index); // the indexing operation
 void add(int val); // add a new value to the end
 int size(); // return length
};

The class declares an integer pointer, pa, that will point to the array itself. length is the number of
elements in the array, and nextIndex is the next available (empty) element. The class will have a default
constructor which will initialize the variables, a destructor, which will do clean-up, and four member functions.
We will overload the index operator [] so that we can index our array just like normal arrays, and provide a
function for adding a new value at the end of the array. size will return the length of the array.

The class declration goes in a file Dynarray.h. Function definitions will go in a file Dynarray.cc.

The constructor

Dynarray::Dynarray() {
 pa = new int[10];
 for (int i = 0; i < 10; i++)
 pa[i] = 0;
 length = 10;
 nextIndex = 0;
}

The constructor creates a default size array (10 elements) using new and assigns it to pa. The for loop
initializes the array elements to zero. length is set to 10 and nextIndex to 0. The constrcutor is called when an
object is created by e.g.

Dynarry da;

The destructor

Dynarray::~Dynarray() {
 delete [] pa;
}

When a object of type Dynarray is created on the stack, as it will be by the above declaration, then care
must be taken to clean-up any memory allocation when the object is destroyed (when its activation record is
popped off the execution stack). This avoids memory leakage. The memory is recovered for re-use by using
delete. The [] after delete indicate that an array is being recovered, not just a single variable.

The indexing operation

The heart of the class is the indexing operation. It must be capable of being used on the right of an
assignment and on the left. E.g.

int x = da[5];

da[6] = 12;

In other words, it must produce a left-hand value as well as a right-hand value. We overload the []
operator (the array indexing operation) and return a reference to an integer. This can serve as both left and right-
hand values:

int& Dynarray::operator[](int index) {
 int *pnewa; // pointer for new array
 if (index >= length) { // is element in the array?
 pnewa = new int[index + 10]; // allocate a bigger array
 for (int i = 0; i < nextIndex; i++) // copy old values
 pnewa[i] = pa[i];
 for (int j = nextIndex; j < index + 10; j++) // initialize remainder
 pnewa[j] = 0;
 length = index + 10; // set length to bigger size
 delete [] pa; // delete the old array
 pa = pnewa; // reassign the new array
 }
 if (index > nextIndex) // set nextIndex past index
 nextIndex = index + 1;
 return *(pa + index); // a reference to the element
}

The test is to make sure that the element begin indexed is in the array. If it is not, then we extend the
array with the following sequence: create a new bigger array to include the element at index, copy the elements
from the old, shorter array to the new array. Initialize any elements in the new array to zero that are past the end
of the old array, delete the old array, reassign pa to the new array, and finally return a reference to the element
at index. Set nextIndex 1 past index if necessary. The return type of int& is the reference and is obtained by
dereferencing the pointer pa, incremented by index. If we returned a pointer, it would have to be dereference it
in the code that uses it. Returning a reference avoids this.

The function add

void Dynarray::add(int val) {
 int *pnewa;
 if (nextIndex == length) {
 length = length + 10;
 pnewa = new int[length];
 for (int i = 0; i < nextIndex; i++)
 pnewa[i] = pa[i];
 for (int j = nextIndex; j < length; j++)
 pnewa[j] = 0;
 delete [] pa;
 pa = pnewa;
 }
 pa[nextIndex++] = val;
}

add does something similar to operator[], but works at the end of the array, making it bigger if
necessary. Whereas we overloaded the operator [] for the main indexing operation, this is just an ordinary
member function, and is called by. E.g.

da.add(15);

The function size

int Dynarray::size() {
 return length;
}

size just returns the current length of the array.

Sample program

A sample program using all of the features of the class is:
int main() {
 Dynarray da; // create an array object, size 10
 da.add(1); // add values to the end
 da.add(2);
 da.add(3);
 da[3] = 4; // use LHV for assignment
 for (int i = 0; i < da.size(); i++) // get length of array using size()
 cout << da[i] << endl; // print out using RHV
 da[12] = 5; // assign element past end of array
 for (int j = 0; j < da.size(); j++) // size is now 22
 cout << da[j] << endl; // print out all elements again in
 return 0; // bigger array
}

A template version

This array only stores integers. To make a dynamic array that stores any values, we can turn the class
into a template:

template <class T>
class Dynarray
{
private:
 T *pa;
 int length;
 int nextIndex;
public:
 Dynarray();
 ~Dynarray();
 T& operator[](int index);
 void add(int val);
 int size();
};

The parameter for the template is T, i.e. any type can be passed in to instantiate the template. Of course,
T* must be the type of the array and T& the return type for operator[]. Each function should also be turned into
a templated version, even when T is not used. T has been substituted wherever we need the type of the array.
Note that Dynarray<T> is now the prefix for each function, rather than just Dynarray as it was before.

template <class T>
Dynarray<T>::Dynarray() {
 pa = new T[10];
 for (int i = 0; i < 10; i++)
 pa[i] = 0;
 length = 10;
 nextIndex = 0;
}

template <class T>
Dynarray<T>::~Dynarray() {
 delete [] pa;
}

template <class T>
T& Dynarray<T>::operator[](int index) {
 T *pnewa;
 if (index >= length) {
 pnewa = new T[index + 10];
 for (int i = 0; i < nextIndex; i++)

 pnewa[i] = pa[i];
 for (int j = nextIndex; j < index + 10; j++)
 pnewa[j] = 0;
 length = index + 10;
 delete [] pa;
 pa = pnewa;
 }
 if (index > nextIndex)
 nextIndex = index + 1;
 return *(pa + index);
}

template <class T>
void Dynarray<T>::add(int val) {
 T *pnewa;
 if (nextIndex == length) {
 length = length + 10;
 pnewa = new T[length];
 for (int i = 0; i < nextIndex; i++)
 pnewa[i] = pa[i];
 for (int j = nextIndex; j < length; j++)
 pnewa[j] = 0;
 delete [] pa;
 pa = pnewa;
 }
 pa[nextIndex++] = val;
}

template <class T>
int Dynarray<T>::size() {
 return length;

}

Now we can do the following:
Dynarry<int> da1; // an array of integers
Dynarray<float> da2; // an array of floats
Dynarray<Dynarray<int>> da3; // and array of arrays of integers

	A C++ DYNAMIC ARRAY
	The constructor
	The destructor
	The indexing operation
	The function add
	The function size
	Sample program
	A template version

