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ABSTRACT
The introduction of smart grids has changed how electric power is
distributed and how power companies measure electricity usage by
consumers and generate bills. When smart grids and smart meters
calculate and report the power usage of a customer to a utility
provider in a user friendlyway, we need to ensure that privacy of the
customers is not violated and no sensitive data such as their energy
consumption habits are revealed either to the utility provider or to
third parties, trusted or otherwise. To this end, we propose a novel
scheme to compute electricity usage of customers and report it to a
utility provider in a secure manner, using cryptographic primitives
such as secret sharing, aggregate signatures, and a distributed file
system for data storage and retrieval. Using our proposed system,
a utility provider can accurately bill a customer for their energy
consumption, without having to know the customer’s energy usage
habits, and without having to rely on trusted hardware or a trusted
third party.
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• Security and privacy→ Privacy-preserving protocols; Soft-
ware and application security;
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1 INTRODUCTION
In the last two decades, the traditional power grid has faced in-
creasing scrutiny from industry as well as the academic community
due to emerging technologies such as renewable energy, rising
demand for electricity, the ever-increasing complexity of electri-
cal power systems, and the need for highly reliable, efficient, and
secure power supply, which has spurred research in, and lead to
the development of smart grids. A smart grid is the next generation
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of the power grid which, broadly, involves four sub-systems: Ad-
vanced Metering Infrastructure, Advance Distribution Operations,
Advanced Transmission Operations, and Advanced Management
Assets. These sub-systems support the function of data integra-
tion, information processing, monitoring and analysis of system
equipment, and data communication to enhance the availability,
reliability and confidentiality of the smart grid.

The most crucial sub-system in the smart grid is the Advanced
Metering Infrastructure (AMI), whose components include smart
meters, communication networks, and information management
systems. The AMI’s communication network establishes bidirec-
tional communication between the utility provider and the cus-
tomer. The AMI’s smart meter records a customer’s energy con-
sumption data within certain intervals of time, e.g., every fifteen
minutes, and sends the customer’s energy consumption data through
insecure, commonly available fixed networks, such as broadband
over power line, power line communications, as well as landline
and cellular public networks. The energy consumption readings
are sent to the AMI’s information management system which han-
dles the data storage and analysis, and provides information in an
appropriate format to the utility provider [23]. A utility provider
can use the energy consumption data in several data analytics ap-
plications such as forecasting energy demand, billing automation,
and confronting energy theft. It also helps customers monitor their
energy consumption.

Unfortunately, the customers’ energy consumption data col-
lected by smart meters include private data such as a homeowner’s
presence (or absence) at a home, the kind of appliances that exist at
the home, and to what extent the homeowners use each of their ap-
pliances. Molina-Markham et al. [24] show that even without prior
knowledge of household activities or prior training, it is possible to
extract complex usage patterns from smart meter data using off-the-
shelf statistical methods such as clustering and pattern recognition
techniques.

Researchers have proposed solutions for privacy-preserving
smart meter billing using compute-intensive cryptographic proto-
cols such as non-interactive zero knowledge proofs [1, 18, 24, 29].
There are also non-privacy preserving solutions for secure billing
that use a blockchain [14], which require a customer to interact
with the utility provider in the billing period, thus requiring them
to be online all the time. There have also been solutions proposed
for private billing that use secret sharing schemes [6, 16, 22, 30, 36],
but require trusted third parties.

Our goal in this paper is to design a billing mechanism that
protects the privacy of the customers, hides their fine-grained elec-
tricity consumption data (e.g., fifteen-minute interval readings)
from the utility provider, only gives the utility provider the accu-
rate aggregate readings at the end of the month to generate a bill,
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accomplishes this without using trusted third parties, is scalable,
and does not use heavy cryptographic machinery.
Our Contributions

• We propose a novel scheme for secure billing of smart me-
ters while safeguarding the privacy of customer electricity
consumption data. Unlike the prior works published in this
area that makes use of trusted aggregators and/or computa-
tionally expensive cryptographic schemes, we do not require
any entity in our system to be trusted and use cryptographic
mechanisms with minimal overhead.

• Our system records and reports the consumption readings
in an accurate way, with data verified at every step, is paral-
lelizable, and uses inexpensive cryptographic primitives. We
experimentally evaluate our scheme to demonstrate scalabil-
ity.

Outline: The remainder of this paper is organized as follows. In
Section 2, we review relevant related work, in Section 3 and Sec-
tion 4 we describe our system and adversary models. In Section 5
we describe our construction and its constituent algorithms, and
in Section 6 we present our experimental evaluations. In Section
7, we describe the security analysis of our model. In Section 8 we
discuss our design choices and alternatives, and in Section 9, we
conclude the paper.

2 RELATEDWORK
Privacy-preserving billing in smart meters has been an active area
of research in the past decade, with researchers exploring various
cryptographic protocols, and proposing solutions with varying lev-
els of efficiency and trust requirements. The relevant related work
can be broadly divided into four categories: privacy-preserving
billing schemes that use compute-intensive cryptographic proto-
cols, schemes that use a trusted aggregator or a blockchain, schemes
based on secret sharing, and schemes based on masking. We now
discuss the work in the categories.
Compute-intensive cryptographic protocols: Jawurek et al. [18]
proposed a scheme that allows a utility provider to compute cus-
tomer bills using energy consumption data without compromising
customer privacy using a trusted privacy component, which can
do non-trivial cryptographic operations such as generating and
verifying homomorphic commitments and signatures. The authors
envision the privacy component to be implemented as a software
application on the smart meter, which unfortunately, leaves it open
to tampering. Diao et al. [10] proposed a smart metering scheme
with the aim of protecting customers’ privacy (i.e., identity hiding)
using anonymous signature schemes, but in the process, reveal the
fine-grained energy consumption data to the utility provider. On
a similar note, Hu et al. [17] proposed a technique to protect the
identity of smart meters by having the meters prove their identity
in zero knowledge to the utility provider, but do not consider cus-
tomer’s fine-grained energy consumption privacy. Saxena et al. [31]
introduced a secure and privacy-preserving data aggregation ap-
proach based on the Paillier cryptosystem’s additive homomorphic
encryption and proxy re-encryption operations. Their approach
can securely aggregate metering data without disclosing personal
information (such as identity of the individual customers or en-
ergy usage) to intermediaries or third parties. In their system, they

assume the existance of two trusted entities, billing centers and
data control units, and honest-but-curious data aggregators. In our
system model, we do not assume the existance of any trusted en-
tity; all entities in our system can be potentially malicious and can
deviate from the described protocols at any point. Furthermore,
they employ homomorphic encryption, which is computationally
expensive and adds to the smart meter’s overhead. We use compar-
atively inexpensive cryptographic schemes such as secret sharing
and aggregate signatures. We provide a comparison of our scheme
with Saxena et al. [31] in Section 6.

Mustafa et al. [25] developed a secure and confidential data ag-
gregation method for gathering operational metering data, which
is later used for computing distribution, transmission, and imbal-
ance fees. Secure multiparty computation (a cryptosystem which is
known to have significant computational overhead) is their core
cryptographic protocol, and it supports three different privacy-
friendly data aggregation algorithms. They also presume that at
least one server from the data communications company, which is
an entity that aggregates and delivers users’ data to suppliers, is
trustworthy. A billing mechanism for smart meters’ energy usage
is not supported by their system; our focus is on providing a secure
and privacy-preserving billing system, hence the work of [25] is
orthogonal to ours.

Tonyali et al. [35] propose new protocols for adapting expensive
cryptographic protocols such as fully homomorphic encryption and
secure multiparty computation for use in a smart grid’s advanced
metering infrastructure. To disguise the meter reading data from
smart meters, the proposed solution encrypts it using fully homo-
morphic encryption, or computes and distributes its shares using
secure multiparty computation. Without revealing the true value of
the readings, the encrypted data/computed shares are aggregated
in a hierarchical fashion at certain aggregator smart meters up
until the network’s gateway. However, a secure billing system for
smart meters is not supported, besides using fully homomorphic en-
cryption and secure multiparty computation is very expensive. We
focus on designing a secure billing system, avoid expensive cryp-
tographic protocols in our design, and rely on lightweight secret
sharing schemes. This design choice is reflected in the computa-
tional time, e.g., in the scheme of [35], for 100 smart meters, the
average data collection time for obtaining all smart metering data
from all aggregators at the gateway in a single round, is roughly
40 seconds. Our scheme has much less computational overhead
where the execution time of most our protocols is a fraction of a
second, and the maximum overhead is 13 seconds. We discuss our
experiments in Section 6.

There have been other privacy-preserving billing schemes pro-
posed that make use of compute-intensive protocols such as zero
knowledge proofs, homomorphic encryption, and/or secure mul-
tiparty computation [6, 11, 19, 22, 24, 29]. Since smart meters are
resource-constrained devices, our goal is to avoid expensive cryp-
tographic protocols and investigate what can be achieved with
relatively inexpensive but secure protocols and primitives, such as
secret sharing schemes, hash functions and digital signatures. Wagh
et al. [37, 38] proposed a framework that uses a combination of se-
cret sharing and compute-intesive secure multiparty computation.
However, their frameworks only partially protect user’s privacy.
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Trusted aggregator/blockchain based schemes: There have been
blockchain-based solutions proposed, such as the work by Guan et
al. [14], where the customers are divided into groups and each group
has its own private blockchain. At every time interval, a certain
customer is selected in a group as a mining node. The mining node
aggregates the energy consumption of the customers and writes the
aggregate reading on its group’s private blockchain, from where
the utility provider can read the aggregate reading. Besides the im-
practicality of groups of users having separate private blockchains,
in this approach, the mining nodes will be able to read customers’
fine-grained energy consumption data in plaintext. Our focus is
on preserving the privacy of the customer’s fine-grained energy
consumption data.

Chen et al. [8] proposed a scheme for aggregation of electricity
consumption data (which is recorded at pre-defined time intervals)
by a smart meter. In this model, there is a trusted authority that
sets up the system, keys all customers, and a control center which
is composed of a set of servers. The control center is run by the
utility provider, and is assumed to be trusted. In our work, we do
not use a trusted authority or a set of computationally powerful
parties. There have been smart meter data aggregation schemes
proposed, which aggregate the data generated by several smart
meters in certain pre-defined time intervals, and report them to
the utility provider, such as [2, 20]. Knirsch et al. [20] proposed an
approach for privacy-preserving data aggregation, where all smart
meters are connected in a ring-shaped topology, with a designated
aggregating entity called data aggregator. However, the proposed
scheme is vulnerable to collusion between the data aggregator and
malicious smart meters. Bao et al. [2] proposed a privacy preserv-
ing data aggregation scheme similar to the one by Knirsch et al;
in their model, there is a trusted authority and a control center to
which the customer’s data is reported, and a gateway that acts as
the link between the customers and the control center. They make
use of the Boneh-Goh-Nissim cryptosystem [5] for encrypting the
customer’s consumption data over a given time period and report
it to the control center in a secure manner. The trusted authority
is responsible for generating the public and private keys used for
encryption and decryption. The consumption data of multiple cus-
tomers is aggregated and encrypted over the given time period
and is sent to the control center. Though we make use of a data
aggregator in our work, this entity need not be trusted and we also
make sure that the data aggregator has no access to any sensitive
data, thereby protecting the privacy of the customer.
Secret sharing-based schemes: Wagh et al.[36] proposed a frame-
work based on secret sharing, but need a trusted third party that can
collect plaintext readings from different smart meters, aggregate
them and pass them along to the utility provider, thus revealing
customers fine-grained readings to the third party. Similar ideas
have been explored by Rottondi et al. [30], who introduce privacy
preserving nodes, that collect a share of measurements from each
smart meter in a neighborhood, and transmit the shares to the util-
ity provider. The utility provider then reconstructs the secret back
to get the aggregated reading for all the smart meters. However,
the utility provider can learn about the exact energy consumption
habits of customers.

Masking: Gope et al. [13] proposed a privacy-preserving aggrega-
tion scheme for billing and load balancing management using mask-
ing. The authors use random values to mask the individual reading
of smart meters. However, in their work, the service provider learns
the fine-grained readings of the users. Liu et al. [21] proposed a
data aggregation scheme without any TTP. Their model masks the
metering data of individual users. However, they use homomorphic
encryption for performing addition operations on the ciphertexts,
which is computationally expensive to perform on resource con-
strained devices such as smart meters.

In contrast to the prior work in this area, we aim to avoid
compute-intensive cryptographic protocols in smart meters, hide
a customer’s fine-grained energy consumption data from a utility
provider and any third parties, yet enable the utility provider to bill
the customer accurately.

3 SYSTEM MODEL
In this section, we describe our system and adversary models. Our
proposed system consists of the following parties:

(1) Smart Meter (SM): A smart meter is an electronic device in-
stalled at a customer household that can monitor and record
energy consumption readings at pre-determined time inter-
vals (e.g., fifteen minutes, hourly, daily, etc.). Additionally,
a smart meter is responsible for reporting the energy con-
sumption readings of a customer to a utility provider. In
our work, we assume standard smart meters equipped with
a 32-bit CPU with a maximum operating frequency of 50
MHz, that support multiply/divide/multiply-and-accumulate
instructions, and have an on-chip flash memory of up to 512
KB [33]. Moreover, we assume the smart meter can interact
with system entities through a distributed file system. We
refer to a user in whose home a smart meter is installed as a
customer, and the smart meter itself as the customer smart
meter.

(2) Leader:A leader is a smart meter that is chosen by the utility
provider to verify and report the aggregate energy consump-
tion readings of the other smart meters in the system to the
utility provider, in exchange for a possible energy rebate or a
service fee. During system initialization, the utility provider
broadcasts a message for the election of the leader in the
system; any smart meter can volunteer to become the leader.

(3) Peers: In our proposed system, each smart meter belonging
to a unique customer constructs a polynomial to generate
shares of its energy consumption readings, blinds them, and
distributes the blinded shares to its peer smart meters. Peers
are responsible for reconstructing the aggregate blinded en-
ergy consumption readings, and reporting the blinded aggre-
gate energy consumption reading to the leader. We assume
that the number of peers is equal to the number of energy
consumption recorded readings. The number of readings
recorded depends on the threshold time period set by the
utility provider. This is a system parameter that the utility
provider chooses depending on the current work load in the
system.
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(4) Utility provider (UP): This entity is responsible for deliv-
ering electricity to the customers and generating the cus-
tomers’ bill based on the received aggregate energy con-
sumption reading. The utility provider sets up the system
parameters such as time intervals at which energy readings
need to be recorded, and time period for reporting aggre-
gate readings, among others. In our proposed system, we
assume that the utility provider interacts with system enti-
ties through a distributed file system.

(5) Distributed file system: We assume the existence of a
peer-to-peer distributed file system, e.g., Interplanetary File
System (IPFS), using which all entities can share informa-
tion. The distributed file system provides a high through-
put content-addressed block storage model, with content-
addressed hyperlinks [3]. In this work, we do not use a
blockchain due to its high gas fees per KB of storage cost.
We compare costs of using a distributed file system vs. using
a blockchain in Section 8. Once data is written to the IPFS,
it returns hash digests that can be used to access the data.
These hash digests are fixed in size (32 bytes), hence writing
data to the IPFS and storing these hashes on a blockchain
is more economical than storing the data directly on the
blockchain. We briefly analyze the costs of writing to IPFS
vs. blockchain in Figure 4.

We now describe the workflow of our system as depicted in Fig-
ure 1. Let us consider a group of customer smartmeters 𝑆𝑀1, . . . , 𝑆𝑀𝑛 ,
a leader 𝑆𝑀𝐿 , a utility provider, and a distributed file system. In
Step 1, the utility provider broadcasts the billing time period, e.g.,
a month, and the time intervals to record the energy consump-
tion reading by customer smart meters, e.g, every fifteen minutes.
The utility provider also selects a leader 𝑆𝑀𝐿 ; in Figure 1, 𝑆𝑀1 has
been chosen as 𝑆𝑀𝐿 . In Step 2, each smart meter records its energy
consumption reading for the time intervals, blinds them using a
suitable blinding factor, and computes the aggregate blinded read-
ing. Each smart meter then creates shares of the blinded reading
using a 𝑘-of-𝑛 secret sharing scheme, e.g., Shamir’s secret sharing
scheme. For example, 𝑆𝑀2 creates n shares 𝑆ℎ𝑎𝑟𝑒2,1,...., 𝑆ℎ𝑎𝑟𝑒2,𝑛 ,
distributes each share to 𝑆𝑀1, 𝑆𝑀3,...., 𝑆𝑀𝑛 respectively. The peers
come together to reconstruct the signed aggregate blinded reading
and send it to 𝑆𝑀𝐿 . 𝑆𝑀𝐿 verifies the broadcasted aggregate blinded
reading and computes the aggregate signature of all the peers. In
Step 3, 𝑆𝑀𝐿 writes the aggregate blinded reading and aggregate
signature to a distributed file system, and broadcasts the returned
digests from the file system, which is used to reference and retrieve
the data in future. In Step 4, the utility provider queries the file
system using the broadcasted digest values in Step 3 to retrieve
the aggregate reading and aggregate signature. Finally, the util-
ity provider verifies the aggregate signature and aggregate blinded
reading and computes the energy bill for the customer smart meters.

Figure 1: System model

4 ADVERSARY MODEL
We assume that all parties have access to a distributed file system
that is always available, e.g., IPFS [3]. We now outline the trust
assumptions on the parties:

• We assume that customer smart meters are tamper-evident,
and have the capability to perform simple arithmetic opera-
tions as described in [12].

• The energy consumption data, once recorded by the cus-
tomer smart meter, should not be modifiable by anyone in
the system. In our system we expect the customer smart
meter to record the readings in an honest and fair manner.

• The leader smart meter can be potentially malicious, in that
it might deviate from the protocol steps at any point. The
leader can potentially collude with other malicious parties
in our system, such as peers and the utility provider: we
discuss different collusion scenarios between the leader and
other malicious parties, and how our system handles them
in Section 7.

• The peer smart meters can turn malicious at any point. They
may arbitrarily deviate from described protocol steps, try to
inject false information into the system, contribute wrong
shares, or might altogether refuse to participate in secret
sharing protocols. In the worst case, our system can tolerate
up to (𝑛 − 1) corruptions among 𝑛 peers. Although, in prac-
tical deployment scenarios, the number of corrupted peers
will be likely far less.

4.1 Security & Privacy goals
We identify the following security and privacy goals for our system:

• A customer’s fine-grained energy consumption data should
only be readable by the customer themselves, and should be
kept private from all other parties. It should be infeasible for
the utility provider, leader, and peers to obtain information
about any customer’s fine-grained electricity usage habits.

• All data exchanged needs to be authenticated as originating
from a verified source.

5 OUR CONSTRUCTION
In this section, we first describe cryptographic preliminaries, fol-
lowed by a brief technical overview of our system, and then describe
our construction and its component algorithms.
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5.1 Cryptographic Preliminaries
We use Shamir secret sharing [32], which is a threshold scheme
used to split a secret value into 𝑛 pieces called shares, such that
any 𝑘 ≤ 𝑛 parties can reconstruct the secret. We also use aggregate
signatures [4]. An aggregate signature scheme compresses multiple
signatures by different parties into a single signature, thus reducing
the overhead of signature verification.

5.2 Technical Overview
At a high level, in our system, each customer smart meter records
and stores the electricity consumption readings for pre-defined
time intervals of a billing period, e.g., fifteen minutes for a monthly
billing period. Following this, the customer smart meter blinds each
time interval reading by multiplying it with a blinding factor cho-
sen from R+. Note that adding the readings for all time intervals
will give us the total electricity consumption for the entire billing
period. Then the customer smart meter encrypts the aggregate
blinded reading with a key that is shared between the leader smart
meter, 𝑆𝑀𝐿 ,𝑈𝑃 , and the customer smart meter. The blinded energy
consumption readings per time interval are secret shared by the
customer smart meter by individually sending them to the peers.
The peers come together to reconstruct the aggregate blinded con-
sumption reading for the billing period, which is the sum of all the
individual blinded readings generated by the customer smart meter,
i.e., it is the constant term of the reconstructed polynomial. The
peers then encrypt the reconstructed aggregate blinded reading
with the public keys of the leader and the utility provider, respec-
tively, sign the corresponding ciphertexts generated, and broadcast
them in the system. The leader retrieves this value, verifies the sig-
natures of all the peers that took part in the interpolation process,
checks if the aggregate blinded reading matches with the one re-
ported by the customer smart meter to the leader. Upon successful
verification, the leader gathers all the signatures of the peers into
an aggregate signature. This aggregate signature along with the all
the ciphertexts by all the entities until this point are collected by
the leader and are written to a distributed file system, such as IPFS.
The file system returns the digests for the cotent written. These
digests are collected into a set by the leader and it is broadcasted
in the system. The utility provider then uses this set of digests and
reads these values from the distributed file system and calculates
the aggregate unblinded consumption reading which is used to
send a bill to the customer smart meter for that billing time period.

5.3 Algorithms
Our system is made up of five algorithms that handle different func-
tions. The first algorithm is Setup, which configures the various sys-
tem parameters and generates the smart meters’ signature and veri-
fication keys. The second algorithm is theBlinded Reading Generation
algorithm, and it involves the customer smart meter recording en-
ergy consumption data, computing the aggregate blinded consump-
tion reading, encrypting and signing the aggregated blinded energy
consumption readings, and broadcasting the result. The third algo-
rithm is Interpolation, which deals with the distribution of blinded
individual consumption readings as shares, the interpolation proce-
dure to reconstruct the aggregate blinded reading, encryption of
the aggregated blinded reading, and broadcasting the ciphertext,

Algorithm 1: Setup
Input :𝜆
Output :𝑇 ,𝜏 , SK1 . . . SKn,VK1 . . .VKn, K1 . . .Kn ,T
Parties :𝑈𝑃 , SM, 𝑆𝑀𝐿

1 begin
2 for i = 1;i≤ |SM| ;i++ do
3 Key(1𝜆)→𝐾𝑖

4 end
/* Steps 5 - 9 are run by all the smart

meters */

5 for i = 1;i≤ |SM| ;i++ do
6 Agg.KeyGen(1𝜆) →(𝑆𝐾𝑖 ,𝑉𝐾𝑖 )
7 end
8 𝑈𝑃 picks 𝑇 and 𝜏 , broadcasts in the system and picks

𝑆𝑀𝐿 ∈ SM as the leader, 𝑆𝑀𝐿 picks a value of T for
the system

9 end

which contain the encryption of the interpolated value by the peers.
This encryption is done twice, once with the public key of the 𝑆𝑀𝐿

and also with the public key of the utility provider. In the fourth
algorithm, the 𝑆𝑀𝐿 verifies the signatures created by the peers on
the interpolated value and also verifies the equality between the
aggregate blinded consumption reading generated by a customer
in Algorithm 2. The 𝑆𝑀𝐿 is also responsible for constructing the
aggregate signature from the individual signatures of the peers on
the interpolated value, and writing all ciphertexts to the distributed
file system.

The 𝑈𝑃 uses the hash digests which were generated by the
distributed filesystem, to retrieve the ciphertexts containing the
aggregate unblinded consumption reading, which was generated
by both the peers and the customer smart meter, and the aggregate
signature generated by the 𝑆𝑀𝐿 . The 𝑈𝑃 then proceeds to verify
the equality between the aggregate unblinded consumption reading
generated by the customer smart meter and the peers, and if they
are found to be equal, 𝑈𝑃 proceeds to calculate the bill for the
customer. For ease of reference, we give a table describing the
notations used in our algorithms in Table 1.

We now describe the details of our algorithms.
1) Algorithm 1, Setup: During system initialization, all customer

smart meters call the KeyGen(1𝜆) and Agg.KeyGen(1𝜆) functions,
which take a security parameter 𝜆 as input to obtain the shared
keys 𝐾𝑖 , and a signing/verification keypair (𝑆𝐾𝑖 , 𝑉𝐾𝑖 ) respectively.
The customer smart meter and the utility provider both utilize the
shared key 𝐾𝑖 . The shared key 𝐾𝑖 is used to encrypt the customer’s
aggregate blinded consumption reading as well as the blinding fac-
tor the customer smart meter applied. The signing and verification
keys generated as a part of this algorithm are used for signing and
verification processes in Algorithms 2,4,5. The 𝑈𝑃 picks a smart
meter to be the leader, 𝑆𝑀𝐿 . Any node can volunteer to be a 𝑆𝑀𝐿 . In
the case of multiple nominations, the customer which has had the
longest association will be selected as the 𝑆𝑀𝐿 . Then the𝑈𝑃 sets the
billing time period, 𝑇 , e.g., a month, and time intervals, 𝜏 , at which
readings need to be recorded, e.g., fifteen minutes, a few hours, or
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Table 1: Notations Used

Notation Description
𝑆𝑀𝑖 An arbitrary smart meter, 𝑖
n Total number of smart me-

ters in the system
SM The set of all smart meters

in the system
𝑆𝑀𝐿 Leader smart meter.
𝑈𝑃 Utility Provider
SignSKi Signing function
VerifyVKi Verification function
𝑆𝐾 Signing key
𝑉𝐾 Verification key
𝐵𝐹 Blinding factor
𝜏 Threshold for reporting
𝑇 Billing time period
𝑡𝑠 Starting timestamp
𝑡𝑒 Ending Timestamp
IPFS.Read() IPFS read operation
IPFS.Write() IPFS write operation
𝛿 te - ts
T Timeout for reporting

the readings to the utility
provider

days. As a part of this algorithm, the 𝑆𝑀𝐿 also sets a timeout value
T , which is the maximum time allowed for all entities (except the
customer) in the system to finish the protocol execution. This value
helps us prevent any intentional DoS attacks in our model. This
timeout value is a system parameter and is subject to change based
on the current workload of the system.

2) Algorithm 2, Blinded Reading Generation: All smart meters
begin recording their energy consumption readings using the inter-
val, 𝜏 , that UP selected in Algorithm 1. To ensure that readings are
not recorded too frequently and the system is not overwhelmed,
each customer smart meter selects a time interval value 𝛿 such
that 𝛿 ≥ 𝜏 . Each customer smart meter selects an initial timestamp
value 𝑡𝑠 and begins recording the consumption data. Each reading
is recorded for a duration of 𝛿 . 𝑡𝑒 represents the ending timestamp
for each reading being recorded. Hence 𝛿 is the difference between
the values of 𝑡𝑠 and 𝑡𝑒 . To authenticate the readings, each customer
smart meter signs the readings recorded with their signing keys
generated from Algorithm 1, with the aggregate reading denoted as
𝑎0. The readings are then blinded by multiplying them with a blind-
ing factor 𝐵𝐹 . Once these blinded readings are generated, they are
recorded in a set SH. The ending timestamps, 𝑡𝑒 of these blinded
readings are hashed using a collision-resistant hash function to
produce unique digest values for each time stamp. This is done
for two reasons: to protect the privacy of the customer’s individ-
ual consumption habits, and to make the process of interpolation
easier. An ordered pair consisting of the hashed time stamps and
the blinded readings are recorded in a set SH. The reason for the
digests of timestamps being recorded in this set is to make use of
these values in the interpolation process. These blinded readings

are signed by the customer’s smart meter using the signing key
generated in Algorithm 1 to preserve the integrity of the readings
recorded, and the signatures are recorded in a set G. The signatures
from this set G are later on verified by the peers in the system
during the interpolation process. Finally, the 𝑎0 and the 𝐵𝐹 are
encrypted with 𝐾𝑖 , which is the shared key generated in Algorithm
1, and the corresponding ciphertext 𝐶 is signed by the smart meter.
A tuple consisting of𝐶 and the signature on it is broadcasted in the
system.

Algorithm 2: Blinded Reading Generation

Input :𝑇, 𝜏 , 𝐻 : {0, 1}∗ → 𝑍+

Output :G, 𝑎0, S′, S, SH,𝐶
Parties :SM

1 Every SM ∈ SM runs this algorithm in parallel
2 begin
3 Pick 𝛿 ≥ 𝜏 , 𝐵𝐹

/* 𝜏 = threshold for reporting */

4 G = ∅, S = ∅ , S′ = ∅ and SH = ∅
5 𝑎0= 0, 𝑡𝑠 = 1

/* 𝑡𝑠 and 𝑡𝑒 are the starting and the ending

time stamps. */

6 for i = 𝑡𝑠 ;i≤ 𝑇 ;i++ do
7 𝑡𝑒= 𝑡𝑠+ 𝛿 , Record S = S ∪ (𝑡𝑒 ,𝑌𝑖 )
8 𝑡𝑠= 𝑡𝑒+ 1

/* 𝑌 ′
𝑖

is the blinded reading. 𝐵𝐹 =

blinding factor */

9 compute 𝑌 ′
𝑖
= 𝑌𝑖 * 𝐵𝐹 , Record 𝑎0= 𝑎0+ 𝑌 ′

𝑖
, Record

SH = SH ∪ (𝐻 (𝑡𝑒 ) , 𝑌 ′
𝑖
), Agg.AggSignSKi (𝑌

′
𝑖
) → 𝜎𝑖 ,

G = G ∪ (𝜎𝑖 )
10 end
11 EncryptKi ((𝑎0 | |𝐵𝐹 )) → 𝐶 , SignSKSM (𝐶) → 𝜎𝐶 ,

Broadcast (𝐶, 𝜎𝐶 ,G, SH) in the system
12 end

3) Algorithm 3, Interpolation: The peers and the customer smart
meters run this algorithm. Each customer smart meter constructs
the secret-sharing polynomial, in which the smart meter selects
random coefficients 𝑎1, ....𝑎𝑛−1, and sets the value of 𝑎0 to be equal
to the sum of aggregate of the blinded consumption readings. The
customer smart meter splits the aggregate blinded consumption
reading into 𝑛 − 1 shares using the constructed secret-sharing poly-
nomial and sends each share to a corresponding peer smart meter.
Initially the customer smart meter constructs a mapping polyno-
mial that maps the digests of the ending time stamps produced in
Algorithm 1 to the corresponding blinded consumption reading.
The value of the term with no coefficient is set to the aggregate un-
blinded consumption reading recorded by the customer. The shares
produced by the customer are recorded in the set SH in Algorithm
1. This set is used by the peers to perform the interpolation process.
Since Shamir secret sharing is a threshold secret sharing scheme,
only 𝑘 out of the total 𝑛 shares will be needed for successful in-
terpolation of the secret value. To guarantee accurate delivery of
shares, e.g, preventing shares from getting lost/dropped along the
way, publically verifiable secret sharing proposed by Stadler [34]

6

Session 1: Energy and Embedded Systems CPSS '22, May 30, 2022, Nagasaki, Japan

20



can be used. Although this was part of our initial design prototype,
we ultimately decided against using it due to efficiency reasons.
The peers initially verify the signature of the customer smart meter
on these shares. Upon successful verification, the interpolation is
performed on the shares present in the set SH. Once the interpola-
tion process is completed with the calculation of the reconstructed
secret value which is the aggregate unblinded consumption reading
generated by the customer, this secret value is signed by all the
peers that took part in the interpolation process to preserve the
integrity of the interpolated value. This data in then encrypted with
the public key of the 𝑆𝑀𝐿 and the 𝑈𝑃 . This encryption is done to
prevent un-authorized modification to the value generated by the
peers. The resulting cipher texts 𝐶1 for the leader and 𝐶2 for the
𝑈𝑃 are broadcasted in the system.

Algorithm 3: Interpolation
Input :S′,G,SH
Output :𝐶1 .𝐶2
Parties :SM

1 begin
/* The customer smart meter runs the steps

2-5 */

2 𝑎′0= 0 , 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 = 0 , IG = ∅
3 for i=1;i ≤ |SH| ; i++ do
4 n = |SH|-1 construct 𝑝 ⟨𝑥⟩ = 𝑎0+

𝑎1𝑥 + 𝑎2𝑥2 . . . 𝑎𝑛−1𝑥𝑛−1 such that 𝑝 ⟨𝑥⟩ = 𝑌 ′
𝑖

5 end
/* steps 6-19 are run by 𝑆𝑀𝑖; i ∈1 . . . |SH| */

6 for i = 1;i≤ |SH| ;i++ do
7 Retrieve 𝜎𝑖 from G , Retrieve 𝑌 ′

𝑖
from SH

8 if (Agg.AggVerifyVKi (𝑌
′
𝑖
,𝜎𝑖 ) → 1 ) then

9 Interpolate 𝑌 ′
𝑖
to compute 𝑎′0 = 𝑝 ⟨0⟩

10 end
11 calculate 𝑎′0
12 end
13 if 𝑎′0=

∑𝑇
𝑖=1 𝑌

′
𝑖
then

14 for i=1;i ≤ |SH| ; i++ do
15 Agg.AggSignSKi ( 𝑖 | | 𝑎′0)→ 𝜎𝑖 , IG = IG ∪ (𝑎′0, 𝜎𝑖 )
16 end
17 EncryptPKUP (IG) → 𝐶1, EncryptPKSML

(IG) → 𝐶2 ,
Broadcast 𝐶1,𝐶2 in the system

18 end
19 end

4) Algorithm 4, Final Reading Calculation: This algorithm is run
by the 𝑆𝑀𝐿 in the system. The leader first decrypts the cipher text
𝐶1 with his secret key and verifies the signatures on the interpo-
lated value produced by the peers using their signing keys. If the
signatures are not successfully verified, it means that one of the
peers deviated from the protocol steps and acted in a malicious man-
ner. Upon successful verification, the leader verifies the equality
between the aggregate unblinded consumption reading generated
by the customer smart meter and the value that is generated by the
peers during the interpolation process. This is done to ensure that

there is consistency in the values reported by the customer and the
values interpolated by the peers. Upon successful verification of
this equality, the leader generates the aggregate signature from all
the individual signatures of the peers. This is denoted by 𝛼 . The use
of aggregate signatures is to conserve the bandwidth and reduce
the time of verification of the signatures of the peers for the utility
provider. The aggregate signature and all the cipher texts generated
and broadcasted by all the entities in the system until this point
𝐶,𝐶1,𝐶2,𝐶𝑎0′ are written to the distributed file system, which gives
back the digest as a content address. 𝑆𝑀𝐿 then broadcasts the di-
gest in the system, which can be used by𝑈𝑃 to retrieve data stored
in the set H. This set is then broadcasted to all the parties in the
system.

5) Algorithm 5: The steps of Algorithm 5 are run by the utility
provider. The provider reads the ciphertexts 𝐶2,𝐶𝑎′0 ,𝐶 from the
distributed file system using the set of digests broadcasted in the
system by the leader. 𝐶 is then decrypted with the shared key 𝐾𝑖
to retrieve the values of 𝑎0 and 𝐵𝐹 . The signature on 𝑎0 by the
customer smart meter, is then verified. Upon successful verification,
the aggregate signature 𝛼 is read and the ciphertext𝐶𝑎′0 is decrypted
using the shared key to reveal the value of 𝑎0. Finally, the values of
𝑎0 and 𝑎′0 are compared. If they are found to be equal, the aggregate
unblinded consumption reading is calculated by dividing 𝑎0 with
𝐵𝐹 and the corresponding bill is generated for the customer.

Algorithm 4: Final Reading Calculation
Input :𝐶1,𝐶2
Output :𝐶𝑎′0 , 𝛼 ,H
Parties :𝑆𝑀𝐿

1 begin
/* 𝑆𝑀𝐿 runs the following steps */

2 H = ∅
3 DecryptSKSML

(𝐶1) → IG
4 for i=1;i ≤ |IG|;i++ do
5 if Agg.AggVerifyVKi (𝑎

′
0,𝜎𝑖 ) → 0 then

6 return ⊥
7 end
8 end
9 if Agg.AggVerifyVKi (𝑎

′
0,𝜎𝑖 ) → 1 then

10 if 𝑎′0= 𝑎0 then
11 Agg.Aggregation(𝜎1, 𝑀1 = 1| |𝑎′0 . . .
12 (𝜎 |IG |, 𝑀 |𝐼𝐺 | = |𝐼𝐺 | | |𝑎′0) → 𝛼

13 EncryptKi (𝑎
′
0) → 𝐶𝑎0′ , IPFS.Write

(𝐶, 𝜎𝐶 ,𝐶1,𝐶2,𝐶𝑎′0 , 𝛼) → 𝐻1, 𝐻2, 𝐻3, 𝐻4, 𝐻5, 𝐻6
14 H ∪ { 𝐻1, 𝐻2, 𝐻3, 𝐻4, 𝐻5, 𝐻6} → H
15 Broadcast H in the system
16 end
17 end
18 end

6 IMPLEMENTATION
In this section, we describe the environment used to test our sys-
tem and provide the experimental results for the performance of
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Algorithm 5: Bill Generation
Input :𝐶,𝐶1,𝐶𝑎0′ , 𝐾𝑖 ,𝛼 ,H
Output :Bill for the customer
Parties :𝑈𝑃

1 begin
2 IPFS.Read(H) → 𝐶1,𝐶𝑎0′
3 DecryptKi (𝐶) → (𝑎0 | | 𝐵𝐹 )
4 if VerifyVKSMi

(𝑎0,𝜎𝑖 ) → 1 then
5 IPFS.Read(𝛼), DecryptKi (𝐶𝑎0′ ) → 𝑎′0, DecryptSKUP

(𝐶1) → IG
6 if Agg.Verification (𝛼 ,(𝑀1,𝑉𝐾1),. . . ,(𝑀 |IG |,𝑉𝐾 |IG |))

→ 1 then
7 if 𝑎′0= 𝑎0 then
8 𝑟𝑒𝑎𝑑𝑖𝑛𝑔 = 𝑎0

𝐵𝐹

9 end
10 end
11 end
12 end

different system entities: utility provider, customer smart meter,
peers, and leader. Our algorithms were implemented in Python
and evaluated on a platform equipped with Intel(R) Xeon(R) CPU
clocked at a 2.00GHz processor, 13 GB RAM.

Table 2: Number of operations performed per billing period
per user for all our algorithms. T is the billing time period
and 𝛿 is the time interval for recording the readings.

Operations At SM At Peers At 𝑆𝑀𝐿 At𝑈𝑃
Polynomial
construction 1 – – –

Polynomial interpolation – 1 – –
Encryptions 1 2 1 –
Exponentiations – – – –
Signatures (T/𝛿) +1 (T/𝛿) 1 –
Products (T/𝛿) – – –
Pairings – – – –
Hashes (T/𝛿)

Table 3: Comparison of our scheme and Saxena et al. [31].
Here, n is the total number of smart meters in the system.

Operations Our Scheme Saxena et al. [31]
Random number generation – 2n+5
Polynomial construction 1 –
Polynomial interpolation 1 –
Exponentiations – 7n+13
Encryptions 4 –
Products (T/𝛿) 4n
Pairings – n+5
Hashes (T/𝛿) 2n+6
XOR – 2n
L function – n+1
Signatures 2(T/𝛿)+1 –

We implement cryptographic primitives using a cryptography
library in Python [28]. The aggregate signature scheme implemen-
tation is built on the top of the Petlib library in Python [26], and
also uses the Pblib library which supports bilinear pairings [9]. In
our implementation, the value of the billing period, T, and the time
intervals within each billing period, 𝜏 , are established by the utility
provider. This value serves as the minimum threshold time period
for the smart meters to record readings, e.g., if the value of 𝜏 is
set to one day, it means that the time interval in which the smart
meters record their consumption readings, 𝛿 , should be greater than
or equal to one day. To model a realistic scenario, we have set the
values T and 𝜏 and 𝛿 to be one month, three days, and one day,
respectively. All smart meters records their energy consumption
data every three days and send the data to the utility provider at
the end of the month, at which point the bill is generated.

Table 2 depicts the type and the number of operations performed
by each party in our system over the course of the entire billing
period. Table 3 summarizes the number of operations performed
by our proposed scheme and the one proposed in [31]. While main-
taining better operational overhead, our scheme does not require
any entity to be trusted.

As shown in Table 4, the peers have the highest execution time,
which increases linearly with the number of peers because the peers
execute several secret-sharing related functions such as interpola-
tion, computation of the blinded secret value, signing, encryption,
andwriting to the IPFS. The degree of the secret-sharing polynomial
is one less than the number of smart meters. The main contributing
functions of the utility provider are Verify, AggVerify, and comput-
ing the aggregate reading. To make the system more efficient, the
degree of the polynomial, the number of peers, and the execution
time of entities can be reduced by increasing the value of 𝜏 .
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Table 4: Execution Time for for Algorithms 4 & 5

# of Smart Meters
Execution time (in sec) for

steps run by parties
Smart
meters Peers SML UP

10 0.42664 1.73602 0.83343 0.8838
20 0.90201 2.49307 0.16605 0.18146
50 2.29235 6.36160 0.43392 0.48573
100 4.74029 13.17859 0.95056 0.98683

The main contributing factors to the execution time of the leader
are Verify, AggVerify, Encrypt functions. The execution time of
Algorithm 1 and Algorithm 2 are shown in Table 5. As shown
in Table 5, the AggVerify function has a higher execution time
because it is a compute-intensive function (including several pairing
functions), which grows linearly in the number of smart meters
in the system. Algorithm 2 has a higher execution time because
each customer smart meter records the energy consumption data
in each time interval, calculates the blinded reading value, hashes
the time intervals values, encrypts, and signs the aggregate reading.
Algorithm 1 has a lower running time since it just generates the
shared key between the entities, and the secret keys and verification
keys of entities.

Table 5: Execution Time of Algorithm 1, Algorithm 2,
AggSign and AggVerify

# of Smart
meters

Execution time (in sec)
Algorithm 1 Algorithm 2 AggSign AggVerify

10 0.01972 0.51779 0.00725 0.07606
20 0.03639 1.12124 0.01739 0.15168
50 0.10365 2.8868 0.06904 0.38649
100 0.27932 6.08485 0.22432 0.73501

7 SECURITY ANALYSIS
In this section, we describe the security analysis of our system.
Specifically, how the different parties in the system can turn mali-
cious and the mechanisms we have in place to handle the malicious
behavior. As we have stated in our assumptions in Section 3, only
the utility provider is honest-but-curious. The other parties in our
system can turn malicious as shown in Figure 2 and Figure 3
Passive attacks:

(1) (n-2) Peers are compromised: The adversary can com-
promise (n-2) peers and obtain their shares. In this case, the
adversary can reconstruct the secret value, but the adversary
cannot learn anything about the real individual energy con-
sumption of a smart meter because each individual smart
meter masks their energy consumption reading with a blind-
ing factor.

(2) 𝑆𝑀𝐿 is compromised : In our system model, the adversary
can compromise 𝑆𝑀𝐿 and can obtain the individual energy
consumption readings of smart meters. But the adversary
cannot learn anything regarding the individual consump-
tion habits of the customer smart meter because all of the

individual energy consumption smart meters are blinded
values.

Active attacks:
(1) Malicious behavior by peers:

The peers in our system can turn malicious and misreport
their shares. If this were to happen, the interpolated secret
value which also happens to be the aggregate blinded con-
sumption reading, 𝑎′0 will be corrupted. This is depicted in
the Figure 2. It can be inferred from Figure 2 that if this were
to happen, the interpolated secret value would be incorrect
(step 3) This will eventually be caught by the 𝑈𝑃 and the
𝑆𝑀𝐿 when they compare the value of 𝑎0 , which is sent by the
customer smart meter with that of the incorrect 𝑎′0 , which
is calculated by the peers in steps 5 and 6 respectively.

(2) Malicious behavior by the leader:
(a) If the leader claims that the AggVerify function (Algorithm

4, line 5) does not pass as in Figure 3, this will be caught
by the interpolating smart meters since they have access
to their verification keys and can eventually verify the
signatures by themselves.

(b) If the leader calculates a wrong aggregate signature in
Algorithm 4 line number 13, or in Algorithm 5 line number
5, in step-1 of the figure. The UP eventually will handle it
by verifying the aggregate signature, as shown in step 4
of Figure 3.

(c) The leader can write wrong values on the distributed file
system and broadcast the corresponding digests in the
system in Algorithm 4 line number 15 as shown in step
1 of Figure 3. But, since the digests are publicly available,
any entity eventually in the system can verify them or the
utility provider verifies their correctness in step 4. The
leader can also modify the ciphertexts created by the peers
during transmission to the system in step 1. If this were
to happen, the adversary would get caught in Algorithm
5 line number 3. When the utility provider decrypts them
to generate the bill for the customer. The mangled cipher
text will not be equal to the interpolated value calculated
by the peers in step 5 in figure 3

(d) The adversary can also mangle the cipher text𝐶𝑎0′ during
its construction. This would be caught during its decryp-
tion in Algorithm 5 line number 5. The leader can collude
with the utility provider and can report an incorrect bill
to the customer. This can be eventually discovered and
disputed by the customer, who knows the amount of elec-
tricity consumed, and the per unit cost.

(e) The leader can collude with one or more peers and can
cause the peers to produce invalid signatures on the in-
terpolated secret value (Algorithm 3, line 15). If this were
to happen, the malicious peers and the leader would be
eventually caught, because the peers sign the interpolated
secret value by concatenating it with their unique identi-
fier. This would help us in identifying exactly which peers
were compromised. Finally, a compromised leader can po-
tentially write incorrect values of cipher texts to the IPFS
file system; since the hashes are publicly broadcasted, the
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values written are publicly auditable. This is depicted in
Figure 3, step 4.

Figure 2: Potential Malicious Activity by the Peers

Figure 3: Potential malicious Activity by the 𝑆𝑀𝐿

8 DISCUSSION
In this section, we discuss the limitations of our system and a few
feasible methods to address them.
1) Using a unique blinding factor for every recorded reading: The
blinding factor, 𝐵𝐹 chosen in Algorithm 2 is common to all readings
recorded by a particular smart meter over a given billing time
period. Even though the readings are blinded, the peers can still
try to guess a pattern from the blinded readings reported to them
in the same range for a given time period. In order to minimize
this, the customer smart meters can use a unique blinding factor for
each time interval reading they create and the tuple containing the
blinding factors can be shared with the utility provider. In practice,
the blinding factor can be generated using a pseudo-randomnumber
generator.

2) Paid IPFS versus vanilla IPFS: The choice of what version of
a distributed file system to use is implementation-dependent. For
example, the free version of IPFS is susceptible to garbage collection
after twenty-four hours, specifically, IPFS nodes can delete data for
which there is not enough demand if the data is not periodically
updated. In our system, since the energy consumption data once
recorded cannot be changed, updates to the IPFS are unlikely in
our application and hence the data could get deleted.

Figure 4: Storage costs for IPFS and blockchain

(a) Storage cost for 1 KB of data on
Ethereum blockchain
1 KB = 8000 bits = 625,000 gas
Gas price = 175 gwei
Total cost = Gas used × price
Total cost = 625,000 × 175 = 109,375,000
Gwei
Total cost in USD =
𝑝𝑟𝑖𝑐𝑒 (𝐸𝑇𝐻 )×𝑇𝑜𝑡𝑎𝑙 𝑔𝑎𝑠 𝑐𝑜𝑠𝑡

1,000,000,000

Total cost in USD = 4346.17×64,375,000
1,000,000,000

Total cost in USD = $475.36

(b) Storage cost for one IPFS hash on
Ethereum blockchain
1 KB = 8000 bits
32 bytes = 256 bits
Total gas needed = 20,000
Gas price = 164 Gwei
Total Cost = 20,000 × 0.00000018 ETH
= 0.0036 ETH
Total cost in USD for 1 digest = $16.92
Total cost in USD for writing 6 digest =
16.92 × 6 = $101.52

A solution to this is to use a paid version of IPFS, e.g., Pinata [27].
Since there is a cost involved, Pinata provides permanent storage
of data on the IPFS system. The price for the service needs to be
paid upfront and users can get storage of 1 GB for a price of 15
cents. This solution could be leveraged if permanent data storage
is a requirement. If one uses this, the utility provider can pay the
storage cost upfront and later retrieve it from the customers as a
part of their monthly energy bills.

3) Distributed file system vs. blockchain: For our proposed
model, we used a distributed storage system, e.g., IPFS, to store
the data. Using such a system achieves high throughput, high stor-
age capacity, and low latency by establishing content service and
provides a storage model representation based on the block with
the content address, low cost, no single point of failure, and is im-
mutable, hence it cannot be altered by an adversary. This is better
in many ways compared to using a centralized authority to store
data such as a cloud server. An alternative to using a distributed
file system is to store all data on a blockchain that all parties have
access to. In our system model, we prefer to use a distributed IPFS
system to store the data instead of a blockchain since prior studies
have shown that using blockchain technology to store the data is
expensive [15].

9 CONCLUSION
In this paper, we have presented a novel construction for secure
and private billing of energy consumption data from smart meters
using distributed file systems without the need for a trusted third
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party. We show that apart from the aggregate consumption data
which is used for generating the bill, no other information about
the user is known to the utility provider. In the future, our system
could be extended to incorporate energy profiling techniques that
might be of use in data analytics applications As a part of our future
work, we plan to prove the security of our proposed system in the
universal composability framework [7].
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