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ABSTRACT
Organized surveillance, especially by governments poses a major

challenge to individual privacy, due to the resources governments

have at their disposal, and the possibility of overreach. Given the

impact of invasive monitoring, in most democratic countries, gov-

ernment surveillance is, in theory, monitored and subject to public

oversight to guard against violations. In practice, there is a diffi-

cult fine balance between safeguarding individual’s privacy rights

and not diluting the efficacy of national security investigations, as

exemplified by reports on government surveillance programs that

have caused public controversy, and have been challenged by civil

and privacy rights organizations.

Surveillance is generally conducted through a mechanism where

federal agencies obtain a warrant from a federal or state judge

(e.g., the US FISA court, Supreme Court in Canada) to subpoena

a company or service-provider (e.g., Google, Microsoft) for their

customers’ data. The courts provide annual statistics on the re-

quests (accepted, rejected), while the companies provide annual

transparency reports for public auditing. However, in practice, the

statistical information provided by the courts and companies is at a

very high level, generic, is released after-the-fact, and is inadequate

for auditing the operations. Often this is attributed to the lack of

scalable mechanisms for reporting and transparent auditing.

In this paper, we present SAMPL, a novel auditing framework

which leverages cryptographic mechanisms, such as zero knowl-

edge proofs, Pedersen commitments,Merkle trees, and public ledgers

to create a scalable mechanism for auditing electronic surveillance

processes involving multiple actors. SAMPL is the first framework

that can identify the actors (e.g., agencies and companies) that

violate the purview of the court orders. We experimentally demon-

strate the scalability for SAMPL for handling concurrentmonitoring

processes without undermining their secrecy and auditability.

CCS CONCEPTS
• Security and privacy → Distributed systems security; Security
protocols; Social aspects of security and privacy; Privacy protections;
• Social and professional topics → Governmental regulations; •
Applied computing→ Law.
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1 INTRODUCTION
With increases in connected devices and electronic communica-

tions becoming the mainstay of human interactions, monitoring of

human electronic activities have become pervasive both by com-

panies trying to use the information for business advantage and

governments trying to surveil citizens for national security and

criminal activities [31]. Organized surveillance, particularly by state

actors poses a serious challenge to an individual’s privacy on ac-

count of the resources at disposal and its potential for overreaching

use [11, 31]. Further, individual or representative entities do not

have a mechanism to audit the surveillance, even after it’s comple-

tion, to assess if their rights were violated.

To motivate the discussion, we use the well-known United States

Surveillance law, namely Electronic Communications Privacy Act

(ECPA), it’s amendments, and it’s corresponding processes as an

example. Similar laws exist in other countries, e.g., the Investigatory

Powers Act in the UK, and the Telecommunications (Interception

and Access) Act in Australia. Several studies have shown that said

processes, although technically auditable, tend to be opaque and sel-

dom fully auditable, even when the audit is performed by powerful

oversight bodies, such as the US Congress [31, 40].

In these monitoring processes, the active players include the

law enforcement/intelligence gathering agency (L) that makes the

surveillance request; the judge/court (J ) that grants the requests;
and the company (C) that provides the data corresponding to the
request. The other actors include the individual (I ) being surveilled
and other users/agencies, e.g., American Civil Liberties Union

(ACLU) [6] whose mission is to defend and safeguard individual

privacy rights. The steps in the process generally start with the

agency L requesting a court order from the judge J . If J approves
the request, she creates a sealed court order, which can only be

unsealed by L for the company C ; the sealed order can be unsealed

for the public after a pre-defined time (set during the issue of the

order). The company C either accepts the request and provides the

data or challenges the order on perceived violations. Once all parties

agree, C sends the data requested. The agency L and company C
can iteratively request and transmit data respectively several times,

as needed, within the purview of the order.

Challenges and Motivation: The said monitoring processes

present several issues that hinder accountability and public au-

ditability, that are desirable for transparency: 1) The fact that there
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exists a sealed order is not publicly notified. 2) Further, as per stud-
ies [35], there is no systematic mechanism to unseal orders. In the

absence of information, there is no way for the public to even know

if there is any order, let alone request its unsealing when the sealing

date expires. Note that an order not getting unsealed might not

necessarily mean the judge issuing the order is malicious, rather,

the judge might simply forget to unseal the order at the right time.

3) An important missing piece in all accountability mechanisms to-

day is that there is no way to make sure that exchanges happening

between L andC , at the time of the surveillance, followed the letter

and spirit of the sealed order (enabling an auditable trail). 4) The
scalability of the processes given the number of requests (around

16K to 33K, as discussed below) and the frequency of exchanges

between/among the parties has not been explored.

Currently the only information that is publicly available is sum-

marized information from the courts themselves or from annual

aggregate reporting by companies [21, 27]. For instance, the FISA

court rulings present the number of requests made under different

sections, the number fully or partially granted, and the number

denied. For example in 2018, 1204 requests were submitted for Sec-

tions U.S.C. 50 §1805 and §1804, with 868 granted, 308 modified,

41 partly denied, and 18 completely denied. However, this infor-

mation usually tends to be high level aggregate statistics, and are

not useful for public accountability. It does not equip individuals

being surveilled with the means to determine if any of the players

involved (law enforcement agencies, companies) reached beyond

the ambit of the court’s order, or if they were unfairly surveilled,

e.g., wholesale or dragnet surveillance.

As a result, the exchanges and dealings between governments

conducting surveillance, citizens being surveilled, and non-profit

privacy advocates and organizations, are uneasy at best, and pug-

nacious at worst. This is evidenced in the steady stream of lawsuits

challenging the constitutionality of various government surveil-

lance programs, raising pertinent questions about the legality and

ethics of the surveillance itself, and if citizens’ privacy and consti-

tutional rights were violated [34, 41, 42].

Google’s transparency report [27] states the number of user

data and account requests made over a six-month period and the

proportion of requests under each category (such as subpoena and

search warrants). Notable is the fact that the number of requests to

Google have been rising steadily for the last five years, e.g., in the

US, 16,407 user data requests for roughly 31,072 user accounts for

year 2012, to 32,877 user data requests corresponding to roughly

68,456 user accounts in 2017.

For the first months of 2018 (the last reported data), there were

20,936 user requests for approximately 62,142 user accounts. Similar

reports are also available from other companies, such as Microsoft

and Facebook [19, 30]. According to our findings, frequently, the

information presented is scarce and there are neither well-defined

mechanisms to audit surveillance processes from the outset, nor

to enable the surveilled individual the capability to assess post-

completion of the surveillance whether the search violated their

privacy rights, e.g., the right of citizens to be secure against un-

reasonable searches and seizures, per the US Constitution’s Fourth

Amendment.

Contributions: In this paper, we propose our framework, SAMPL

that addresses the challenges mentioned above. Our novel contri-

butions include: i) Design of SAMPL: a generic and scalable frame-

work for accountability of monitoring processes. ii) Capability for

auditing the compliance of the entities over the lifetime of the

surveillance order, from the outset, using cryptographic techniques,

such as zero knowledge proofs (ZKPs), and Pedersen commitments.

We introduce an entity called Enforcer who serves as the conduit
for interactions between law enforcement/intelligence gathering

agencies and companies, and verifies their interactions to guar-

antee compliance. We qualitatively prove that auditability of the

surveillance process when the court order is active is only possi-

ble if an entity like our proposed enforcer serves as the conduit

for information and the process does not leak information about

the surveillance to the public, just provides audit insights. iii) A
case study of our system in the context of the US legal system. iv)
Security analysis of the the proposed framework. v) Validation of

the framework using a near-real world implementation to assess

scalability.

Outline: In Section 2, we review related work. In Sections 3 and 4,

we present the systemmodel, and threat model and privacy/security

properties, respectively. In Section 5, we present our construction

for SAMPL; in Section 6 we discuss SAMPL in the context of the

US legal system; and in Section 7, we present the security analysis

for SAMPL. In Section 8, we present our implementation of the

framework and our evaluations to demonstrate both feasibility

and scalability. In Section 9, we discuss possible enhancements,

extensions and generalizations of SAMPL. For better readability,

we give the proof of security of SAMPL in the appendix.

2 RELATEDWORK
Our related work falls into three broad categories: auditing and

access control mechanisms, dragnet surveillance, and surveillance

with accountability. We review each of these below.

Auditing and access control mechanisms: Goldwasser and
Park [25] proposed cryptographic mechanisms involving ZKPs and

commitments to provide auditability in the application of secret
laws. For example, the U.S. Foreign Intelligence Surveillance Act

(FISA) court operations are classified, and the court typically hears

arguments only from government agencies [22]. While the focus

of [25] was on providing the public auditable records that secret
laws were correctly applied by courts, our focus is on verifying

whether the interactions between the law enforcement agencies

and companies, follow the letter and spirit of a court’s order.

Bates et al. [8] proposed mechanisms to enable secure audits

of wiretapping systems. Kroll et al. [28] designed a way for enti-

ties such as companies, law enforcement/intelligence-gathering

agencies to prove using cryptographic techniques that they are

authorized to access data such as phone records and email data.

These works focus on providing auditability using encrypted au-

dit logs that are not accessible to the general public, whereas our

goal is to focus on public accountability. Kamara [29] proposed a

mechanism for federal agencies to carry out warranted tapping on

phones of users, which focuses on providing access-control, not

public accountability.

Dragnet surveillance: Segal et al. [38, 39] focused on building

mechanisms to avoid contact chaining, where a large number of
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users get pulled into a surveillance net, chiefly because they were

associated with a legitimate target of surveillance. Their account-

ability mechanism ensures that government agencies can safely

disclose statistics such as number of warrants per month and maxi-

mum number of individuals affected per warrant.

Table 1: Notations

Variable Definition

λ Security parameter

J , L, C , E, I , U, I Judge, Law enforcement agency, Com-

pany, Enforcers Set, Individual, Set of

Users, Set of Individuals

σ Signature

T I ’s total data records

RI = (VKRI, SKRI) Real identity of individual I

AI = (VKAI, SKAI) Anonymized identity of individual I

PI = (VKPI1 , SKPI1 ), . . .

, (VKPIm , SKPIm ) Pseudonymous identities of individual I

KCI Key shared between company C and indi-

vidual I

K JLC Key shared between J , L, C

KE JLC Key shared between E, J , L, C
C Ciphertext

bSize Batch Size for a client

bNum Batch number for a specific client message

πPIi ZKP that PIi is valid pseudonym of indi-

vidual I

SO Surveillance order

IO Intermediate order

ι time period for surveillance

Verify() Verification function

ZKPVerify() ZKP Verification function

Jdecide() Judge decision function

Ldecide() Law enforcement agency decision func-

tion

Cdecide() Company decision function

OrderGen() Judge order generating function

SR Law enforcement agency’s surveillance

request

SRR Company’s surveillance request response

| | Concatenation operator

BC() Blockchain

BC.read() Blockchain read function

BC.write() Blockchain write function

Surveillance: Frankle et al. [24], proposed a system which deals

with accountability in secret processes, which is most relevant to

our work. There are two significant differences between [24] and

our work: 1) [24] requires law enforcement agencies and companies

to post cryptographic commitments and ZKPs to the blockchain

at regular intervals. Moreover, in their system, honest parties are

trusted to log information regularly, and honest parties are expected

to report dishonest logging whenever they see it. There are two

problems with this: firstly, government agencies and companies

might be forgetful, and cannot be trusted to post information reg-

ularly to a public ledger. Secondly, companies might be loath to

report possibly dishonest logging by law enforcement agencies

when they see it, fearing retribution.
1

We remove this requirement by introducing an independent

auditor, called Enforcer (E), who can keep both, the company and

the law enforcement agency in check. 2) In [24], ZKPs created by

an agency and/or company are basically a proof that they are aware

of the court’s surveillance order. A ZKP is a proof of knowledge,

not compliance; merely proving knowledge of the contents of a

court’s orders does not guarantee that the agency/company are

complying with the court’s orders. In our system, the Enforcer

explicitly verifies that the data requested by the law enforcement

agency, and given by the company are within the ambit of the

court’s surveillance order. This is done in a privacy-preserving

manner such that the Enforcer does not actually get to know the

user’s data (e.g., emails), but is able to verify that the agency is not

over-requesting data, and the company is not over-sharing data.

3 SYSTEM MODEL
Parties: In our system, there are six parties: the individual being

surveilled I , companyC that I has an account (e.g., e-mail) with, law

enforcement/intelligence gathering agency L requesting the surveil-
lance, Judge J who can potentially issue the surveillance order on I ,
and an Enforcer E, who enforces accountability of L and C’s opera-
tions, by ensuring that L does not request more information about I
than what is authorized by J , andC does not over-share information

about I , more than what is authorized by J . Finally our system has a

set of interested users, U, made up of civil-rights and/or non-profit

organizations (e.g., American Civil Liberties Union (ACLU)) whose

mission is to protect and preserve individuals’ privacy as defined

by laws. We assume that all communication between J , L, C , E, I ,
and U takes place via secure and authenticated channels. They use

each other’s public and verification keys, respectively to encrypt

and authenticate all communication between them.

We note that I ⊂ I, where I is a set of individuals who have an
account with C . Our table of notations is given in Table 1.

Identities of an individual I : In our system, an individual I has
three identities associated with her:

A real identity, RI which may correspond to I ’s e-mail address

that is being surveilled. RI is established between I and C when I
signs up for service with C . In our system RI is represented by a

verification/signing key-pair: RI = (VKRI, SKRI). The company C
stores VKRI and VKRI is known only to J ,L, and C . In particular,

RI will not be known to E. We assume that RI is stored safely by

I , does not get compromised, and acts as the root-of-trust for all

other keys involving I .
An anonymized identity, AI, which corresponds to a nickname

associated with RI. When a user signs up for service with a com-

pany, they are asked to create the anonymized identity AI which is

linked by C to their real identity RI. The user can create only one

anonymous identity with a service provider (e.g., one nickname per

1
A report issued by the US Department of Justice’s OIG [2] says that they found

company employees provided telephone records to the FBI in response to just verbal

and e-mail requests, without legal process or even exigent letters, since they (company

employees) believed the requests related to major FBI counterterrorism investigations.
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e-mail address). We represent AI by a keypair: AI = (VKAI, SKAI).

We use anonymized identities to avoid having the enforcer know

RI. The company C stores VKAI which is known and revealed to

E, J ,L, and C during the surveillance period.

A pseudonymous identity, PIi ; i ∈ [1..m], represented by PI =
(VKPIi , SKPIi )which corresponds to I ’s pseudonym associated with

AI. The pseudonymous identity can be chosen from a set of m
identities, with the restriction that only one pseudonymous identity

can be active at any given point of time, and a pseudonymous

identity cannot be reused. Pseudonymous identities, as opposed

to real and anonymized identities, are transient key-pairs. VKPI
is known and revealed to E, J ,L, and C . The company stores all

historical VKPIs for future verification.

An individual storing data on company servers: Although
SAMPL enables the auditing of a broad range of data and application
types, for illustration in this paper we use user emails. In Section 9,
we generalize this requirement.When an individual I signs up for

service with a company C , it interactively creates a symmetric key

KCI to be shared between C and I . I uses KCI to encrypt sensitive

information, but keeps the date and time as plaintext and signs

the whole message. KCI can be updated periodically. C and I agree
on two parameters, bSize and bNum, which denote batch size and
batch number.

The batch size represents the intervals at which the user’s mes-

sages are batched. The batch number indicates the batch a given

message originates from. Let I ’s total data records, e.g., emails be

denoted by T . Then bNum = T /bSize, bSize can be a static or dy-

namic parameter. In the static case, I sets up bSize at the time of

service initiation withC , and doesn’t change it; in the dynamic case,

bSize can be changed by I as needed. SAMPL supports both these

implementation choices.

I creates and encrypts each email with KCI before sending it to

C . At the end of each batch,C creates a Merkle tree with the hashes

of all messages in the batch at the leaves. C sends the root hash

of the Merkle tree to I . I verifies the root hash calculation, signs

it if accepts, and sends it to C . All signatures contain a timestamp

which has sign date and time. C then discards the Merkle tree and

archives just the signed root hash, since C can create the Merkle

tree on demand from the stored ciphertexts as needed.

Role of Enforcer, E: Each communication between L and C in-

volves them independently passing the message to E for verification.
Once E verifies that the message is not over-requesting or over-

sharing data with respect to an approved court order, the message

is passed on to the intended recipient (C or L). When surveillance

data fromC is approved by E and received by L,C sends the shared

key, KCI directly to L, who can can then decrypt the information

and carry out the investigation.

We envision the enforcer to be a government watchdog or or-

ganization that oversees adherence to laws and rights by private

companies and law enforcement agencies. Federal agencies have

their own oversight entities, e.g., FBI is audited by the Department

of Justice’s Office of the Inspector General (OIG). Other federal

agencies also have their corresponding auditing entities. These en-

tities currently do auditing when needed, and hence the auditing

always happens after the event. We propose that the OIG plays a

proactive role in auditing such process, and enforce accountability

from the beginning, rather than play a reactive role and issue review
and audit reports after-the-fact, as it currently does.

Blockchain and its operations: The blockchain, BC, is used as an
official record for verification of actions performed, we use it as an

off-the-shelf enabling technology. When forwarding a request, each

entity posts a signed hash of the request/response to the blockchain–

a transaction–all messages posted on the BC are signed. The BC
also serves as a platform to announce new cases to the public

watch dogs and the general public without divulging investigation

details. The miners ensure that only valid entities involved in an

investigation can post transactions to the BC. We envision the

implementation of SAMPL using a permissioned blockchain with

read-only access given to public. For efficiency and fast convergence,

proof-of-stakemay be used as the distributed consensusmechanism.

The infrastructure required for the BC may be maintained and

managed by the judicial system to engender greater trust.

4 THREAT MODEL
We list trust assumptions on the parties in the system:

Judge J : The judge J is assumed to be honest, but forgetful, i.e.,

J might forget to unseal records at the right time. J is trusted to

correctly generate an Surveillance Order (SO) and place it on theBC.
Whenever SO’s seal expires, members of U can choose to contact

J to make public the contents of SO . U can then verify details of

case, including contacting I as needed.
Law enforcement agency L: L is assumed to be malicious, in that

L will try to over-request data beyond what is authorized by the

SO issued by J (we discuss some overreaches in the real world in

Section 6.2). Once the SO is posted by J on the blockchain, L will

contact E with a surveillance request (SR). SR will be checked and

ratified by E based on the SO and prevalent policies.

CompanyC :C is assumed to be malicious, in thatC can over-share

data beyond what is sought by the SR, and authorized by J ’s SO .
If C fails to respond to an SR with a surveillance request response

(SRR), then there are policy measures that can be exercised by J to
enforce compliance.

Enforcer E: E verifies each SR generated by L and also verifies

each SRR generated by C , respectively. We assume E is honest. The

enforcer only knows I ’s anonymized identity,AI and pseudonymous

identity, PI. In particular, E is not privy to I ’s real identity RI. E
also does not have access to the plaintext version of I ’s records
stored with C (e.g., emails). When a certain threshold of failures on

the part of L,C is reached (which can be a implementation specific

system parameter), E can choose to contact J and post a message

to BC exposing identity of the faulty party. The enforcer does not

store information linking AI and PI after evaluating an SRR.
No collusion assumption: In our system, we assume L and C

do not directly communicate with each other, and go through E for

information exchanges. We believe if L and C break this protocol

and interact directly, auditable data structures [26] may be used to

verify the operations of C . However, out of band, unbridled data

exchange is difficult to prevent when both parties are complicit.

Nevertheless, for accountability, it is in L’s and C’s interest to act

according to due process, and go through E, and not collude.

4.1 Privacy and security properties
SAMPL provides the following privacy and security properties:
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Accountability for L and C : We ensure that a malicious L and/or

C cannot over-request, or over-share data, respectively, beyond

that authorized by the SO , as long as they do not bypass the en-

tire system, and collude via side-channels. This applies to both:

over-requesting/over-sharing of the surveilled user’s data, or data

belonging to users not listed in the SO (not under surveillance).

Forgetful J : Our system enables an independent set of users,U (e.g.,

non-profit organizations such as ACLU) who keep track of court-

order unsealing dates, to contact the courts to unseal non-sensitive

information, contact the individuals who were being surveilled, and

help them with further courses of action.

Security against malicious I and C: We ensure that a malicious

I cannot make C fail E’s queries by creating fake ZKP for their

real, anonymous and pseudonymous identities. Also, a malicious C
cannot create fake data for I and frame I .

We now give the computational assumption for our system.

Definition 4.1. (DDH Problem [10]) We say that the DDH prob-

lem is hard relative to G if for all PPT algorithms A, there is a

negligible function negl such that

|Pr [A(G,q,д,дx ,дy ,дz ) = 1]

−Pr [A(G,q,д,дx ,дy ,дxy ) = 1]| ≤ negl(λ)

where in each case the probabilities are taken over the experiment

in which G(1λ) outputs (G,q,д), and then uniform x ,y, z ∈ Zq are

chosen.

5 DESCRIPTION OF SAMPL

As a pre-requisite to using SAMPL for surveillance, I andC interact

to setup keys, associated ZKPs, and other operations as outlined

in Section 5.1. Surveillance on user I ’s data is carried out with in-

teractions between J ,L,C , and E as described in Section 5.2. We

note that SAMPL has 7 protocols and 4 algorithms. We adopt the

convention that communication protocols are run between two

or more entities, and algorithms are computations done by a sin-

gle entity. We recall that per our system model we assume that

all communication between entities takes place over secure and

authenticated channels.

5.1 Pre-Requisite for SAMPL

Protocols 1 and 2 bootstrap the communication between C and I ,
and the corresponding data exchange. These protocols are required

so that in case of surveillance request by L for I ’s data, E can verify

the user data without gaining any knowledge about identity of I .

Protocol 1: Setup run between C and I .

Input :Public parameters: Group G,q = |G|,д,h ∈ G.
Output : I establishes RI,AI,PIi , bSize and KCI with C .
Parties :C and I .

1 User I sets up (VKAI, SKAI) and (VKPIi , SKPIi ), and sends the

ZKPs, their verification metadata, and signatures on the

ZKPs: (πAI,πPIi ), zkpVerf , and (σAI,σPIi ), respectively, to C .
2 User I sets up a shared key with C , KCI , used to encrypt I ’s

data stored on C’s servers.
3 C and I agree upon and setup a batch-size, bSize ∈ Z+.

Protocol 1: This is run by an individual I the first time she

sets up an email account with company C . In Line 1, I does two
3-round ZKPs with C to prove that: 1) VKAI was produced by

someone who has knowledge of SKRI, and 2) VKPIi was gener-

ated by someone who has knowledge of SKAI (if C accepts VKAI
as valid). At the end, C will receive from I a copy of VKAI,VKPIi
and their associated ZKPs, πAI,πPIi , and signed copies of the ZKPs:

σAI = SignSKRI
(πAI),σPIi = SignSKAI

(πPIi ), along with some public

verification metadata, zkpVerf , which will be used by the Enforcer

for verifying the ZKPs. The proofs are Chaum-Pedersen-style in-

teractive ZKPs [16], which can be made non-interactive using the

Fiat-Shamir transform [20]. Since the ZKPs are essentially used as
black-boxes, in order not to distract the reader with their details, we
give the ZKPs and their description in Appendix A.

Next, I and C setup a shared key KCI using which I ’s emails

stored on C’s servers are encrypted. I and C also agree upon a

batch-size bSize, which denotes the message-intervals at which I ’s
emails will be batched, e.g., after every 100 emails. C will batch all

of I ’s emails at bSize intervals and create a Merkle hash tree for the

batch with the hashes of the emails at the leaves; I will verify and

sign the root of the tree.

Protocol 2: Exchange of data betweenC and I for a given batch.

Input :Public parameters: bSize, bNum ∈ [1..maxbNum].
Output :C stores I ’s emails along with verification hashes.

Parties :C and I .
1 LetMbNum represent the set of all e-mail messages in bNum.

2 for eachMx ∈ MbNum, x ∈ [1..bSize] do
3 I encryptsMx : Cx ← KCI (Mx ), sends Cx to C .

4 C stores Cx .

end
5 /* At the end of batch bNum of bSize messages: */
Let CbNum represent the set of all ciphertexts in bNum.

6 begin
7 C generates hashes, Hx = H (Cx ), for all the Cx received

from I .
8 C forms a Merkle tree MbNum, with the Hx s at the leaves,

and RbNum as root of the Merkle tree.

9 C sendsMbNum and RbNum to I .

10 I verifies that the root hash (RbNum) ofMbNum is correctly

computed:

10.1 If verification fails, I notifies C to retry.

10.2 Else, I signs RbNum: σRbNum ← SignSKPIi
(RbNum),

sends σRbNum to C and deletes all local copies ofMx .

11 C stores σRbNum along with previously stored Cx ’s for

batch bNum.

end

Protocol 2: Protocol 2 depicts I ’s emails being stored on C’s
servers. Before I and C execute this algorithm, they would have

already run Protocol 1 to setup the symmetric key KCI . I creates an
email messageMx and encrypts it with KCI , generating Cx , before
forwarding it to C (Lines 2,3,4). This already happens in OpenSSL,
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where the connections (and data transmitted) between two commu-

nicating entities are encrypted using pairwise symmetric session

keys.

Protocol 3: J issuing SO and posting SO on BC.

Input :VKAI,VKPI of user I , G, д,h ∈ G, q = |G|.
Output : J issues SO , sets up keys K JLC ,KE JLC and transmits

them to relevant parties.

Parties :E, J ,L, and C .
1 L issues a request to J : SR = (VKRI | |evidence).
2 J validates L’s request. If “accept”← Jdecide(SR), J generates

IO = (VKRI | |evidence) and gives to L.
3 L gives IO to C; C validates the IO . If “accept”← Cdecide(IO),

C sends to J and L, (VKAI | |σAI | |πAI), given to C by I in
Protocol 1.

4 J validates C’s response, checks if
“true”← Verify(VKRI,σAI,πAI), and if

“true”← ZKPVerify(VKRI | |VKAI | |πAI | |zkpVerf ), and does the
following:

4.1 Pick K JLC ← {0, 1}
λ
, send to L and C . Pick

KE JLC ← {0, 1}
λ
, send to E,L,C . J also picks r2, r3 ← Zq ,

д,h ∈ G, and generates Pedersen commitments:

Com1 = (д
K J LChr2 ), Com2 = (д

KE J LChr3 ).
4.2 J creates P1 = (VKRI | |evidence). P1 is encrypted with K JLC
and hence is accessible only to J , L and C . P1 is transmitted to

L and C for verification and signatures.

4.3 J verifies the received signatures of L and C on P1, and
embeds the signatures of J ,L,C on P1: σJP1,σLP1, and σCP1 in
P2, to preserve identity of L and C .
4.4 P2 contains VKAI, start/end dates ι = [ts , te ], among other

information, is encrypted with KE JLC , and sent to L and C for

verification and signatures σLP2,σCP2. σJP2,σLP2,σCP2 are
then appended to the SO as P3.
4.5 Generates SO ← OrderGen(VKAI | |VKRI | |evidence), which
has format as described below:

SO = ⟨metadata| |σmetadata | |CP1 | |CP2 | |CP3⟩,where

CP1 = E JLC (P1)

CP2 = EE JLC (P2)

CP3 = EE JLC (σJP2 | |σLP2 | |σCP2)

At the end of the current batch bNum, letCbNum represent the set

of all ciphertexts in bNum. C calculates hashes for all Cx ∈ CbNum
and uses them as leaves to create a Merkle hash tree MbNum (Lines

7,8).C sendsMbNum and the root hash (RbNum) of the Merkle tree to

I (Line 9). I verifies that RbNum calculation is correct for the current

batch. I signs the verified RbNum and sends σRbNum to C (Line 10.2).

I can then delete all the data stored locally since it is available for

future retrieval from C . C stores σRbNum and discards the Merkle

tree for the batch (Line 11). This construction helps reduce the

space overhead significantly. This process is repeated for all future

batches. If I found RbNum to be wrongly calculated, then I does not
sign RbNum and C is contacted to reconstruct the Merkle tree and

try again (Line 10.1).

5.2 Surveillance
The communication model under SAMPL can be divided into four

phases, which we depict in Figure 1, and we give a high level idea

of the phases in what follows.

Phase 1: Figure 1: Steps 1-7, are described in Protocol 3, and

represents the first phase of SAMPL. It describes collection of in-

formation by J to validate the need for an SO , create, and post it

to BC. This allows members of U to verify public data in SO for

accountability of L and C , and allows L to conduct surveillance on

data for I .
Phase 2: Figure 1: Steps 8-11, are described in Algorithm 4 and

Algorithm 5, and represent the second phase of SAMPL. In Algo-

rithm 4, L creates the SR corresponding to the SO created in Phase
1, and in Algorithm 5 we enforce accountability for L by having E
verify the SR before sending it to C .

Figure 1:Workflow in SAMPL (Dashed lines represent Key Exchange
and solid lines represent regular communication).

Phase 3: Figure 1: Steps 12-15, are described in Algorithm 6

and Algorithm 7, and represent the third phase of SAMPL. In Al-

gorithm 6, C creates the SRR corresponding to the SR received in

Phase 2, and in Algorithm 7 we enforce accountability for C by

having E verify the SRR before sending it to L.
Phase 4: Figure 1: Step 16, is described in Protocol 8 and repre-

sents the fourth phase of SAMPL. In Protocol 8, L decrypts the user

information and conducts the surveillance specified in the SO .
Protocol 3: Protocol 3 presents the interaction between J ,L,C,

and E, which culminates in J issuing a surveillance order SO , and
setting up surveillance-related keys. In Line 1, L approaches J with
evidence of suspicious behavior on the part of I which forms the

surveillance request (SR). Here evidence represents the documented

evidence supporting the SR. J has its own internal decision pro-

cedure, Jdecide using which it decides whether to accept or turn

down the request (Line 2). If J decides to reject the request, L will

have to return with an updated request SR = (VKRI | |evidence′), if
it wants to persist with the request.

If the request SR is accepted, J generates an intermediate order

IO , and gives it to L who forwards it to C . If C decides to comply

(according to Cdecide), it retrieves VKAI corresponding to VKRI,

sends VKAI to L, along with πAI, and σAI obtained in Protocol 1. L
forwards this info to J (Line 3). If C decided to not comply with IO
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(e.g., request violates statutory company policy), C would address

the reasons to L prompting potential intervention from J , which is a
judicial matter and out of scope of SAMPL. On receiving info from

Algorithm 4: L creating and posting SR on BC, and sending

to E for verification.

Input :SO created on BC.
Output :Surveillance request SR created and sent to E.

1 begin
2 L creates a surveillance request:

SR = (SO| |ι = [ts , te ]| |VKAI | |C).
3 L generates and posts H (SR) to BC.
4 L sends SR to E, who handles it as described in Algorithm 5.

5 end

C , J independently verifies the ZKP associated with VKAI and the

signature on it (Line 4). If the verification fails, J notifies C and L,
and exits. If the verification passes, J generates two symmetric keys:

K JLC meant to be shared between J , L, and C , and KE JLC meant

to be shared between E, J , L, and C . J then issues a surveillance

order SO which is formatted as in Figure 2. The metadata may

include case number, date of unsealing, and Pedersen commitments

Com1 and Com2 to K JLC and KE JLC , respectively (Line 4.1), and

any other information that can be made public about the case.

The commitments are needed to hold J accountable. Part 1 (P1)
contains data meant to be shared between J , L, and C only, and

includes VKRI and the evidence. P1 is encrypted with K JLC (Line

4.2), and the hash of the encrypted P1 is signed independently

by J (σJP1),L (σLP1), and C (σJP1) (Line 4.3). These signatures

are included inside Part 2 (P2) along with VKAI, start/end dates

of surveillance (ts , te ) respectively
2
. P2 is encrypted with KE JLC ,

before it is sent for verification and signing to J , L, and C which

yield σJP2,σLP2 and σCP2, respectively on successful verification.

BeforeC signs hash of encrypted P2, it verifies thatVKAI contained

in P2 corresponds to VKRI contained in P1 that it had signed, i.e.,

σCP1.
These signatures are then verified by J , encrypted with KE JLC

and added to SO as part of Part 3 (P3). The signatures are included
in the encrypted text to preserve the identity of L andC from public

until the SO is opened to public. Signatures on CP1 and CP2 are

verified by E to hold J ,L, and C accountable. The different kinds of

SOs are discussed in Section 6.

Algorithm 4: This shows the surveillance request, SR created by

L after J posts SO to the blockchain, BC. L creates an SR by creating

a tuple with the start/end dates for the requested surveillance time

interval, ι = [ts , te ] (Line 2). L includes the AI of the intended

surveillance target, VKAI. A reference to the original SO and the

identity of C (whom the SR is intended for), is also included in the

SR tuple. L then posts the hash of the SR on the BC and forwards

SR to E for verification (Line 3,4).

In SAMPL, the Enforcer uses the start/end times listed in the SO ,

and the pseudonymous identities of the email senders listed in the

SO to check over-requesting by L and over-sharing by C .3

2
An SO could possibly have multiple, non-contiguous dates/times of surveillance.

This will not affect the system design.

3
This can be extended to the Enforcer checking pseudonyms of recipients too, filtering

by subject of e-mails, etc., which gives finer auditing granularity. This will not affect

Figure 2: Structure of SO generated by J .

Algorithm 5: E verifying SR received from L.

Input :SR received from L.
Output :Accept or reject SR.
/* Verify SR does not violate SO published on BC

by J. */

1 E retrieves KE JLC sent by J in Protocol 3, does

P2← DE JLC (CP2), posted on BC, and accepts SR as valid if:

2 begin
3 The VKAI of P2 and SR match.

4 The time interval, ι = [ts , te ] contained in SR is within the

timeline specified in P2.
5 end
6 If E accepts SR, a confirmation is posted on BC. Since all BC

transactions are signed, we denote the corresponding

transaction signature as σE
SR ; and SR is forwarded to C .

7 If E rejects SR, it notifies agency L and judge J , and SR is not

sent to C . It also stores evidence of the reason for rejection,

which will be provided to J ,L upon request.

Algorithm 5: Here E receives the SR from L and processes the

SR. The verification includes checking that the time interval ι from
SR is a sub-interval of the timeline contained in P2 of SO . After E
verifies SR, it signs the hash, H (SR), and posts the signature σE

SR on

BC. Then SR is forwarded to the C listed as intended receiver in

SR. If SR fails to verify with E, no message is posted on the BC, and
SR is not forwarded to C . If fine-grained accountability is desired,

the failure message can be posted to BC, identifying the reason and

scope of the failure. We discuss this further in Section 9.2.

the base system design, but will require more computations and verifications on the

part of I , C , and E . We discuss such generalizations in Section 9.1.
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Figure 3: (a) Illustration of communication between C and E.
(b) Illustration of relevant Merkle trees in SRR.

Algorithm 6 and Algorithm 7 cover interaction between E andC ,
as depicted in Figure 3, whereC responds to an approved SRwith an

SRR containing requested user data.C selects user data that matches

criteria outlined in SR (depicted by shaded items in Figure 3(b))

and adds the data to SRR before sending it to E for verification. E
verifies the SRR and either forwards it to L if approved or contacts

C if verification failed.

Algorithm 6:When C receives a verified SR from E, C verifies

that ι and VKAI listed in SR are the ones actually signed by C in P2
of SO (Line 2). C then creates an SRR in response to SR. C checks

each message stored corresponding toVKAI listed in the SR. If some

messageMx in batch bNum matches the surveillance time ι in SR,
then the encrypted message (Cx ), the sibling hashes forH (Cx ) inthe
Merkle tree for bNum, and σbNum are added to the SRR by C (Line

9). C also includes the ZKP for the VKPIj used to sign σbNum (Line

9). Once C has finished processing all messages for the VKAI listed

in SR, C adds identity of L to SRR and then posts a signed hash of

SRR to BC (Line 13). SRR is then forwarded to E (Line 15).

For ease of exposition, we have presented SRR creation for one

batch (bNum). If there exist multiple batches, bNumi ; i ∈ [1..T /bSize],
where T is the total number of I ’s messages stored on C , Line 7-11
of Algorithm 6 are repeated for all the batches. In Line 12, the SRR
includes corresponding C, sibling hashes, batch number, root of the

Merkle hash tree, concatenated in order.

Algorithm 7: E receives the SRR fromC , and parses its contents.
E verifies the signature (σE

SR) on the corresponding SR (Line 1). For

each Cx that appears in SRR, E checks that the message is dated

within the time period ι = [ts , te ] from SR (Line 3). Then the root

hash for Cx , RbNum is computed using the sibling hashes for Cx
provided in SRR, and the signature σRbNum is verified (Line 4). The

ZKP for VKPIj used in σRbNum is also verified by E (Line 5). If there

aremultiple batches, they are verified in succession at this time; as in

Algorithm 6, we omit this part in the algorithm and this description

for ease of exposition. After E verifies SRR, it signs H (SRR), and a

message containing the signature of E is posted on BC, and SRR is

forwarded to L listed as intended receiver in SRR (Line 7). If SRR
failed to verify with E, no message is posted in the BC and SRR is

not forwarded to L. If fine-grained auditing is required, a failure

message can be written to the BC.

Algorithm 6:C creating SRR, postingH (SRR) on BC, and send-
ing SRR to E for verification.

Input :SR received from E.
Output :SRR created and forwarded to E.
/* When C receives a validated SR from E, it does

the following: */

1 begin
/* SO verification */

2 C decrypts CP3 of SO contained in SR, verifies signatures
σJP2,σLP2. C then decrypts P2 of SO , verifies σJP1,σLP1.
It then checks if (ι,VKAI) contained in SR corresponds to

what it had signed in σCP2.
3 end
/* C create an SRR in response to the SR as

follows */

4 begin
5 C retrieves and verifies signature σE

SR posted on BC.
6 Let CbNum represent the set of all ciphertexts in bNum.

7 for each Cx ∈ CbNum; x ∈ [1..bSize] for VKAI do
8 if Cx was created during time-period ι = [ts , te ] from

SR then
9 Add Cx | |siblingHashes(Cx )| |bNum| |σRbNum to SRR,

Add the signed ZKP for VKPIj used to verify

σRbNum (j ∈ [1..m]) to SRR:
(σAI | |πAI | |σPIj | |πPIj | |д | |zkpVerf ), where zkpVerf
is some metadata given to C by I for ZKP
verification (details in Appendix A, Protocol 11).

10 end
11 end
12 C adds the identity of L to SRR. The final SRR is given

below.

SRR = ⟨SR| |L| |Cx | |siblingHashes(Cx )| |

bNum| |σRbNum | |σAI | |πAI | |σPIj | |

πPIj | |д | |zkpVerf ⟩

13 C generates and posts H (SRR) on BC.
14 end

/* C sends SRR to E. */

15 C sends SRR to E, who processes it as described in Algorithm 7.

Protocol 8: Once L receives a validated SRR from E, it posts a
signature on the hash of SRR to BC as acknowledgment. L then

asks C to hand over KCI to be able to decrypt I ’s encrypted emails

in SRR and conduct surveillance.

Protocol 9: This is not a part of the regular workflow of SAMPL

and is optionally executed by members of U on an as needed basis.

It can be implemented using smart contracts. In Protocol 9, any

member(s) of a set of watchdog organizations, u ∈ U (e.g., ACLU),

who monitor the BC, can contact J whenever an SO expires and

retrieveK JLC ,KE JLC . Entityu decrypts the SO (P1 and P2), verifies
signatures (P3), and can contact I who was surveilled. I ,u can then

investigate and verify the validity of reason for surveillance, if due

diligence was applied, and lawful procedures were followed during

surveillance.
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Algorithm 7: E verifying SRR received from C .

Input :SRR received from C .
Output :Accept or reject SRR.

1 E retrieves SR from SRR, and verifies signature σE
SR posted on

BC.
2 for each Cx ∈ SRR; x ∈ [1..bSize] do
3 E confirms that Cx is dated within time period ι from the

SR.
4 E computes H (Cx ), runs

RbNum ← rootCompute(Cx | |siblingHashes(Cx )| |bNum),

and checks “true”

?

= Verify(VKPIj ,RbNum,σRbNum ).

5 Finally, E verifies ZKP for VKPIj used to sign σRbNum with

given (σAI | |πAI | |σPIj | |πPIj | |д | |zkpVerf ).
6 end
7 If E accepts SRR, a confirmation is posted on BC. Since all BC

transactions are signed, we denote the corresponding

transaction signature as σE
SRR ; and SRR is forwarded to L,

who handles it as described in Protocol 8.

8 If E rejects SRR, it notifies J ,C and SRR is not sent to L. It also
stores evidence of the reason for rejection, which will be

provided to J ,C upon request.

Protocol 8: L on receiving validated SRR from E.
Input :Verified SRR received by L from E.
Output :Surveillance carried out by L.
Parties :L and C .

1 L receives SRR, and posts a signed hash of SRR to BC as

acknowledgment of SRR received.

2 L gets KCI from C to decrypt I ’s emails (Cx ’s contained in

SRR), and carry out surveillance.

Protocol 9: Protocol run by members of U.

Input :SO posted on BC.
Output :u checks adherence to protocol by parties involved in

surveillance in relation to SO and follows up with J .
Parties :u ∈ U and J .
/* Whenever there is a message posted on BC by E:

*/
1 u ∈ U checks the signatures of the hashes posted.

/* Whenever an SO expires according to ι ∈ [ts , te ]

posted on BC: */

2 u contacts J and retrieves K JLC ,KE JLC . u decrypts P1, P2 and
verifies P3 of the SO .

6 APPLICABILITY: CASE STUDY OF U.S.
LEGAL SYSTEM

In this section, we discuss how our system can be instantiated and

adapted in a real-world legal system to provide accountability. We

consider the U.S. legal system as an example, and discuss our system

within its constitutional and jurisdictional parameters. SAMPL can

be modified to be applicable to legal systems in other countries.

6.1 Different Authorization Paths
The U.S. constitution provides several authorization paths for law

enforcement agencies to obtain permission to conduct surveillance,

some with judicial oversight, some without. We discuss them below.

Electronic Communications Privacy Act (ECPA): ECPA was

created by the U.S. Congress in 1986 [17] to elucidate the boundaries

of government surveillance on citizens, and clearly define the ways

and means by which government surveillance can be conducted.
4

ECPA can be used by federal law enforcement agencies to obtain

information about users’ emails in transit, emails at rest, phone calls,

location data, and more. ECPA provides law enforcement agencies

two methods of accessing users’ information: via warrant, or via

subpoena. A subpoena is a court order demanding that someone

or something be provided to assist in a case. For issuing a warrant,

the law enforcement agency must show the issuing judge probable

cause that a crime has been, or will be committed. Most warrants are

unsealed when charges are filed against someone, and the defendant

has the right to see the evidence collected against them before the

trial.

Per ECPA statute 18 U.S.C. §2616 [3] and statute 18 U.S.C. §2703 [4],

emails in transit, emails in storage on home computer, and un-

opened emails in remote storage stored for ≤ 180 days all need

a warrant for law enforcement access. Opened emails in remote

storage, and unopened emails stored for > 180 days only need a

subpoena for law enforcement access.

Our system can be deployed in a straightforward manner in

both cases, as described in Section 5, where the SO written to the

blockchain by J can be either a subpoena or a warrant. The SR

and the furnished data are all routed through the Enforcer, E, who
writes the data transfer success/failure to the blockchain BC for

auditing (refer Section 5).

National Security Letter (NSL): The USA PATRIOT Act §505 [36,

37] empowered the Federal Bureau of Investigation (FBI) to is-

sue a National Security Letter compelling companies to disclose

information about their customers for a national security-related

investigation. An NSL is typically issued to a company by a local

FBI field office and does not require judicial oversight. It can be

used to obtain meta-information about phone/email records, times,

length of service, network addresses, how a customer paid for ser-

vice; although the FBI cannot obtain actual content of phone/email

records. An NSL can also be used by the FBI to obtain financial

details, such as credit reports, and bank account details from banks,

credit unions and insurance companies. Any recipient of an NSL is

prohibited by law or “gagged” from disclosing their receipt of the

NSL, which makes oversight difficult. Additionally, the U.S. govern-

ment can seek judicial enforcement of an NSL in non-compliance

situations, under ECPA statute 18 U.S.C. §2709.

Since NSL does not require a judge, there is no J to post the SO to

BC. But L andC can still use SAMPL and hence E for auditability. L
would create an SO for the NSL, post it onBC, and then create an SR,

4
There have been calls to reform ECPA,with several amendments to the law beingmade

over the years, such as the USA PATRIOT Act, among others. It has also faced criticism

for being outdated and not inclusive of many modern methods of communication,

since it was first codified in 1986. Nevertheless, as of this writing, ECPA with its

amendments is the law in the U.S. relating to surveillance processes. A full discussion

of proposals and avenues for future ECPA reform, and their possible consequences on

our system is out of the scope of this paper.
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before sending it to E. E would then pass it on to C , after checking
that the SO and the SR does not request content of emails (which

is a legal restriction on NSLs). Note that E cannot check if an SO is

for a genuine national security issue, since U.S. law expressly gives

discretionary powers to the FBI while deciding to issue NSLs. But

what E can help check is if the SO and SR adhere to legal guidelines,

that is, the agency is only seeking meta-information. On receipt of

the SR from E, C will construct and return an SRR to E, who will

then verify it and send it to L.
Our pseudonymous identity scheme prevents E from learning

the actual identities of the users whose details were requested. As

discussed before, E writes the pass/fail result of the SR and SRR to

the BC. The legal/political feasibility of writing encrypted NSLs to

the BC is out of the scope of this paper.

Foreign Intelligence SurveillanceAct (FISA): FISAwas enacted

in 1978 and amended in 2008 by the U.S. Congress for the purposes

of surveillance related to foreign powers and persons [22]. Under

FISA, a person who is believed to be a foreign power, or spying

on behalf of a foreign power can be put under surveillance, even

if they haven’t engaged in any criminal activity. Over the years,

the ambit of FISA has gradually expanded to include electronic

surveillance, “roving wiretap” surveillance, pen-registers, and trap-

and-trace devices, per 50 U.S.C. Ch. 36 [5]. Additionally, FISA per-

mits warrantless surveillance5 up until certain time periods, beyond

which the agency conducting the surveillance needs to obtain a

warrant from a special court called the FISA court [23]. Although

the court maintains records of its proceedings, the FISA court’s

records are not available to the public.

Our system can be applied to the FISA ecosystem, which en-

compasses the court, and surveilling agencies which work with it,

such as the NSA. The FISA ecosystem operates with little to no

auditability (other than annual aggregate statistics published by the

court). Using our system, the FISA court judges will issue and post

an encrypted SO on the BC. The E can verify that the surveillance

is not conducted in wholesale or an overarching manner by agen-

cies, and only data that is pertinent to an ongoing investigation is

revealed by companies. In particular, our system allows indepen-

dent non-profit organizations (e.g., ACLU) to verify if due process

has been followed during FISA-authorized surveillance, even if the
actual court orders are never made public, without compromising

national security.

6.2 Law Enforcement Agencies Overreach:
Violations, “sneak peeks” and more

In the U.S. legal system, a government agency, e.g., FBI or NSA

is, in most cases, required to present a warrant to a company for

conducting surveillance on its customers, and conduct the surveil-

lance within the confines of the warrant. Unfortunately, in practice,

there are agency overreaches; we outline a few here. In 2018, the

NSA’s Office of Inspector General (OIG) in its first semi-annual

unclassified report to the U.S. Congress described the investiga-

tions and activities of the NSA [32]. Among other findings, the OIG

report found “several deficiencies that have the potential to impact

the protection of U.S. persons privacy rights,” in relation to FISA

investigations conducted by the NSA.

5
One such program has recently come to light [41].

A report by the Department of Justice (DoJ) OIG found that

the FBI issued NSLs “contrary to statutory limitations," issued “im-

proper requests under the statute referenced in the NSL”, “obtained

information beyond the time period referenced in the NSL,” and

various other illegal uses of NSLs [1]. A partially redacted 300-page

report by the DoJ OIG [2] also found that the FBI acquired phone

call information regarding “hot numbers” without legal process,

made inaccurate statements to the FISA court, and improperly used

FBI administrative subpoenas. The OIG report also finds that the

FBI uses “exigent letters” and other informal requests for phone

records that do not comply with legal requirements or FBI policies

governing the acquisition of those records. The same report also

found the FBI has a practice of conducting “sneak peeks” for tele-

phone toll records in providers’ databases without due process, a

practice that violates the ECPA statute 18 U.S.C. §2702(a)(3).

All said, our system will help systematize a seemingly unpre-

dictable process that would help law enforcement agencies and

companies ensure that they follow the letter of the law with respect

to issuing and responding to surveillance requests respectively.

7 SECURITY ANALYSIS
We prove the security of our constructions in the well-known Uni-

versal Composability (UC) framework [12]. The UC paradigm el-

egantly captures the conditions under which a given distributed

protocol is secure, by comparing it to an ideal realization of the

protocol. To this end, the UC framework defines two “worlds”:

the real-world, where the protocol, π to be proved secure runs in

the presence of a real-world adversary, A. The other is the ideal-

world, where the entire protocol, ϕ is executed by an ideal, trusted

functionality, in the presence of a simulator, S, which models the

ideal-world adversary. All users only talk to an ideal functional-

ity via secure and authenticated channels, the ideal functionality

takes input from users, performs some computations in a possibly

interactive manner, and returns the output of the protocol. The

goal then is to prove that no distinguishing algorithm, commonly

called as “environment”, Z, can successfully distinguish between

the execution (EXEC) of the two worlds.

7.1 Design of Ideal Functionalities
We define an ideal functionality, FSurveil which encompasses all our

other functionalities and algorithms, and consists of four indepen-

dent ideal functionalities, FSurveil = (F
SAMPL

zk ,Finit,Fcreate,FBC).

Furthermore, we assume that FSurveil maintains internal state that

is accessible at any time to FSAMPL

zk ,Finit,Fcreate,FBC. We describe

the functionalities of FSurveil, discuss some of their motivating

design choices, and give the proof of the following theorem in

Appendix B.

Theorem 7.1. Let FSurveil be an ideal functionality for SAMPL.
LetA be a probabilistic polynomial-time (PPT) adversary for SAMPL,
and let S be an ideal-world PPT simulator for FSurveil. SAMPL UC-
realizes FSurveil for any PPT distinguishing environment Z.

8 EXPERIMENTATION AND RESULTS
We evaluate the performance of SAMPL for scalability, and to bench-

mark the operations performed by different entities within SAMPL

with varying system parameters and surveillance requirements.
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(a) (b) (c)

Figure 4: (a) Verification time of SRR by E for different surveillance durations (legends) at batch size of 32 messages, (b) Verification time of
SRR, batch size of 64messages, and (c) Merkle tree computation time at C for different message sizes (legends) and batch sizes.

8.1 Experimental Setup
Four Desktop class machines with Intel(R) Core(TM) i7-6700K CPUs

and 8GBRAMeachwere used to run our implementation of SAMPL.

Each of the machines ran a single entity in SAMPL: J , E, L, and
C , communicating over C Sockets. The entities were coded using

the C programming language and compiled with gcc version 7.3.0

(Ubuntu 7.3.0-27 ubuntu1 18.04). Our code, along with test data gen-

erators, and a small test database is available online [33]. Random

user data, for 500 users, was pre-generated and stored in an SQL

database (we use email as the representative application) atC . User
data was created for 120 days.

In our experiment, RI for a given user is tied to their real name

and each user has an AI tied to their name in the database, where

the AI is a key pair that is tied to the user’s PIi ; i ∈ [1..m] using
ZKPs. We simulated with only a single PIi for each user’s data,

during the surveillance period. The cryptographic operations of

signing and verifying user data, and ZKP related operations were

prototyped using the Charm Cryptographic framework [7]. AES-

256 in GCM mode was used for the symmetric key encryption

involving KCI ,K JLC , and KE JLC . For emulating the blockchain in

SAMPL, we used Ethereum [18]. Each entity ran its own Ethereum

node and communicated with the local blockchain network.

8.2 Metrics and Parameters
Separate simulations were run for 5, 10, 15, and 30 users in the SO

posted by J . The surveillance periods simulated were 5, 10, 20, and

50 days. These aforementioned values (number of users, days) were

chosen to demonstrate scalability in the event of concurrency. We

evaluate SAMPL using the following metrics:

(1) ZKP generation and verification time per user: The Prime192v1
Elliptic Curve was used as the prime order group G for ZKP as

described in Protocol 11.

(2) Merkle root generation and signing per user: Simulations were

run for batch-sizes with 16, 32, 64, 128, and 256, leaves in the tree

with message sizes set to 1 KB, 75 KB, 1 MB, and 2 MB.

(3) Enforcer Verification Time: Measured for 5, 10, 15, and 30 users,

batch sizes of 32 and 64 messages, and surveillance period of 5, 10,

20, and 50 days. The message size was set to 75 KB.

Verification of SR by E as depicted in Figure 1: Step 11, is not

quantified in the results because it does not involve complex cryp-

tographic operations. This step would incur a low computational

cost regardless of the number of AIs and duration of surveillance

in SR, as it only involves comparisons and range checks between

SR and the corresponding SO on BC.

8.3 Results
Table 2 reflects the ZKP verification and generation times per user

averaged over 100 runs. The generation time is calculated for the

setup in Protocol 1 (only establishment of PI: ref. Protocol 11). The
average ZKP generation time was 1.02ms with a standard deviation

of 0.236 ms. This time is expended when an I signs up for a new

account with C or whenever I establishes a new PI with C . The
verification time is calculated for an E verifying the user data inside

SRR (calculated once per SRR). The verification time was found to

be 1.066 ms with standard deviation of 0.096 ms.

Figure 4a shows the verification time of SRR by E for different

number of Is in SR, and different surveillance periods, for a batch

size of 32 messages. Figure 4b shows the SRR verification time,

for a batch size of 64 messages. We observed a linear increase in

computation time with an increase in the number of users. We

note that the computation time includes the ZKP verifications, the

Merkle tree generation and root signature verification (one per

user), and doing the date range checks on the data.

Comparison of Figures 4a and 4b shows that the verification

of SRR for batch size of 64 messages is faster by roughly 0.65 s.

This difference is because for the same number of total messages,

larger batch sizes will result in less Merkle tree roots and signature

verification operations when compared to smaller batch sizes. In

our simulations, SRR verification for 10 users for a surveillance

period of 30 days involved processing 299 batches with the batch

size of 32 messages, as opposed to 153 batches with 64 messages.

Similarly, number of batches processed for 30 users over 30 days

involved processing 898 batches with 32 messages and 460 batches

with 64 messages.

Figure 4c shows the computation time at C at the end of each

batch. Batch sizes of 16, 32, 64, 128, and 256messageswere simulated
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for messages sizes of 1 KB, 75 KB, 1 MB, and 2 MB, averaged over 50

runs. The larger message sizes represent emails with attachments.

The computation time for the different message sizes converges

as the batch size grows. This is because once the hashes of the

messages are calculated for leaves of the Merkle tree, the rest of

the operations on Merkle trees of given batch size are the same for

messages of different sizes. For Merkle trees with larger messages

initial hash computation of the leaves of the tree has to deal with

larger data size.

To give a fine-grained analysis of components of SRR verification

at E, we give a break down of the computation time in Table 3. For

each step, it does follow that the amount of time taken is linear, as

the number of users and/or surveillance period is increased, hence

showing the scalability of our approach.

Table 2: Zero Knowledge Proof Timings

Operation Mean Standard Deviation

ZKP Generation 1.02ms 0.236ms

ZKP Verification 1.066ms 0.096ms

We note that the total time for operations performed on a given

SRR depicted in Table 3 are lower than the computation time de-

picted in Figures 4a. This is due to the extra operations for look ups

and other input-output operations performed by E on SRR during

the verification.

9 DISCUSSION
In this section we discuss some generalizations and possible en-

hancements of SAMPL.

9.1 Generalization
SAMPL can apply to other types of surveillance criteria by mod-

ifying the way user records are stored by C . In case of email, the

sender and receiver names and their IP addresses could be salted

and hashed separately and stored along with other details such as

date and time as the metadata. This information could be listed in

the SO and subsequently verified by E without learning the actual

values. This will enable search based on sender/receiver names

and/or IP addresses. Searchable encryption [9] can be implemented

to search based on specific keywords in the data records. Although

this increases the types of surveillance auditable, it leaks more

information to E.
SAMPL can also be extended to allow a user to delete historical

records. The user would update the data record to a generic “deleted

message,” the Merkle root for the given historical batch would be

recalculated with the new message, and the user would sign the

updated Merkle root with the current SKP I . Every time VKPI gets

updated by the user, C verifies the ZKP and also verifies the signa-

tures on the Merkle root so that I cannot inject fake data/signatures
to frame an honest C . For practicality, the management of users’

VKPIs can be handled by software like keystores, plugins, etc.

There can be instances where a single user is part of multiple

surveillance requests. In that case, each SO has VKAI, and E can

link it to the corresponding VKPI using the ZKP provided by C .
Our framework does not provide unlinkability of the independent

surveillances to a user’s VKPI. The problem of malicious enforcers

leaking information about the VKAIs is not addressed by us.

SR can also include requests for system logs showing activity

of a certain user identified by VKAI. If the logs contain VKRI, to

preserve privacy, C can replace it with VKAI. If the logs contain

VKPI, then C furnishes the ZKP associated with VKPI. Unlike data

such as emails, users do not see the logs, hence do not sign them.

9.2 Enhancements and Adaptability
There are several design choices in our system that are implementation-

specific. We list some below:

(1) Set of Enforcers:We can relax the assumption on the E from

honest to being honest but curious. To provide unlinkability of users’

PIs over multiple surveillances for a given time period, nonoverlap-

ping striping of data across the set of Es, when sending SR or SRR
could be used. Note that the sets of enforcers chosen by L and C
need not be the same. This would increase the efficiency of verifica-

tion of the system, as data for verification is not duplicated between

different Es. As long as the number of SOs for a given AI does not
exceed the number of enforcers in the system, the unlinkability

assumption will hold (due to the non-overlapping striping).

(2) Internal decision procedures of J ,L, and C: Certain actions

are largely dependent on the specific jurisdiction, and are governed

by the laws of the country where J ,L, and C operate. What exactly

J ,L, andC do when any of their internal decision procedures return

a “reject” in the course of operation is beyond the scope of SAMPL.

For example, what happens when C decides to reject the IO when

the IO violates statutory company policy in some way? Or what

is the course of action for L to follow if J decides to reject its

surveillance request?

(3) Handling Multiple Users: We described, prototyped, and an-

alyzed SAMPL with an example of a single user being surveilled

by L, this can easily be extended to multiple users (I ∈ [1..α]) by
modifying the SO to include a list of users’ identities. We would

then haveVK1

RI, · · · ,VK
α
RI,VK

1

AI, · · · ,VK
α
AI, andVK

1

PIi
, · · · ,VKα

PIi
.

When multiple identities are surveilled, J needs to add a random

string (salt) to each user’s identity(VK1

RI, · · · ,VK
α
RI) and hash it

before putting it in P1 of SO . This randomization added to each

identity will help protect the identities of each of the surveilled

users from each other whenever the SO expires and is released to

the individuals being surveilled. The random salts for all theVKRI’s

are shared with L and C .
(4) Hard reject/soft reject: Whenever an SR or SRR is rejected by

E, perhaps due to clerical errors, administrative errors, or otherwise

honest mistakes on the part of C or L, E just responds with a reject

message and takes no further action (soft reject). E can assess how

many times a certain party’s request/response has been rejected.

Once this number of rejections reaches a threshold, which can be

a system parameter, E informs the party whose request/response

was rejected, and the judge J , and stores a local copy of the reason

for the rejection (to provide to J upon request), and writes a “fail”

message to the BC – a hard reject. Note that for fined grained

information on errors/malicious behaviors, E can choose to post

soft reject on BC.
(5) Auditable data structures: Auditable data structures [26] im-

plemented onC’s servers could also be used by E to verify thatC is
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Table 3: SRR Verification time (sec ) break-down at E for bNum = 32 and message size of 75 KB.

Surveillance Period (Days) 5 10 50

Number of Users 5 10 15 30 5 10 15 30 5 10 15 30

ZKP Verification for PIi (s) 0.039 0.0795 0.1207 0.2003 0.0750 0.1528 0.229 0.459 0.369 0.740 1.109 2.219

Merkle Root Generation (s) 0.140 0.259 0.382 0.619 0.246 0.475 0.705 1.390 1.1178 2.224 3.32 6.64

Merkle Sign Verification (s) 0.015 0.0304 0.046 0.0767 0.0286 0.0583 0.0875 0.1757 0.141 0.282 0.423 0.846

non-malicious and complying with court orders. This implementa-

tion would need careful system design with read/write counters on

the data stores with E having access to the counters.

(6) Forward Security: If one of I ’s previously used SKPI gets com-

promised and C gets access to it, C can fake I ’s historical data by
modifying the Merkle trees for past batches and signing them with

the compromised key. To guard against this, each time I chooses a
new PI, a new Merkle tree is created between I andC whose leaves

are the signed root hashes of the past batches. The root of this new

hierarchical Merkle tree is signed with the new PI. This operation
can be repeated for each new PIs to make it harder for a malicious

C to frame I , since C would need to compromise multiple SKPIs

belonging to I .

10 CONCLUSION
In this paper, we present a practical mechanism for secure auditing

of surveillance orders by an overseer called Enforcer, E. The E checks
if law enforcement agencies and companies are over-requesting

and over-sharing user data, respectively, beyond what is permitted

by the surveillance order, in a privacy-preserving way, such that

E does not know the real identities of the users getting surveilled,

nor does it get to read the users’ unencrypted data. Our system also

has inbuilt checks and balances to require unsealing of surveillance

orders at the appropriate times, thus enabling accounting of the

surveillance operation being surveilled to verify that lawful proce-

dures were followed, protecting users from government overreach,

and helping law enforcement agencies and companies demonstrate

that they followed the rule of law.
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A ZERO-KNOWLEDGE PROOFS BETWEEN I
AND C

Protocol 10 is initiated by I when she needs to establish her real

identity RI (corresponding to an email address and represented

by keypair (VKRI, SKRI)) and tie it to an anonymized identity AI
(corresponding to a nickname for the email address and represented

by keypair (VKAI, SKAI)). I can choose to create a new AI if she
needs to change the current AI in case SKAI gets compromised.

The goal of Protocol 10 is for I to establish her (VKRI, SKRI),

(VKAI, SKAI) keypairs, and prove in zero-knowledge toC thatVKAI
could have been generated only by someone who had knowledge of

SKRI, and that the two key-pairs are related to each other by a DDH

tuple. To this end, I and C do a Chaum-Pedersen-style interactive

ZKP [16] (ZKP) for I to prove her anonymized identity, AI toC . The
proof πAI can be made non-interactive by applying the Fiat-Shamir

transform [20]. IfC chooses to accept the proof as valid, it asks I to
send a signed copy of the transcript of the proof, σAI. C stores πAI
and σAI.

Protocol 11 is initiated by I when she needs to establish her

pseudonymous identity (PI) keypair (VKPIi , SKPIi ), where i ∈ [1..m].
I could have multiple PIs tied in to a single AI, but only one can

be active at a given point in time. I creates a new PIi+1 if SKPIi
gets compromised or after a certain time period, which could be a

system parameter.

The goal of Protocol 11 is for I to establish her (VKPIi , SKPIi )

keypairs, and prove in zero-knowledge to C that VKPIi could only

have been generated by someone who had knowledge of SKAI, and

the two key-pairs are related to each other by a DDH tuple. To

this end, I and C do a Chaum-Pedersen-style IZKP [16], similar to

Protocol 10 for I to prove her current pseudonymous identity,VKPIi
to C (made non-interactive by applying the Fiat-Shamir transform).

If C chooses to accept the proof, PIi , as valid, it asks I to send

a signed copy σPIi of the transcript of the proof. C stores πPIi
and σPIi . πPIi and σPIi are used by C during surveillance to prove

that PIi was generated by I . Although we have abstracted it out, a

Pedersen commitment is of the formдv ·hr (mod q), whereд,h ∈ G,
q = |G|, v is the value to be committed to, and r is the commitment

randomness. Here h = дa mod q, where a ← Zq is chosen by the

Protocol 10: Setup of (RI,AI) keypairs.

Inputs :Public parameters: Group G,q = |G|,д,h ∈ G.
ZKP Claim: VKAI was generated by someone with

knowledge of SKAI, SKRI.

Witness: SKAI, SKRI.

Output :Signed ZKP: SignSKRI
(πAI)

Parties :C and I
1 I picks a,a′ ← Zq , sets SKRI = a, SKAI = a′, and VKRI = д

a
,

VKAI = д
a′
.

2 begin
3 I picks ω1 = д

a ·a′
, and sends DDH tuple

(д,X = дa ,Y = дa
′

,Z = дa ·a
′

) to C .
4 C picks a challenge s ← Zq , and sends Com(s) to I , where

Com is a Pedersen commitment.

5 I picks r1 ← Zq , computes y1 = д
r1

mod q,

y2 = д
a′ ·r1

mod q. I sends y1,y2 to C .
6 C sends s to I .

7 I verifies Com, computes response z = a · s + r1 mod q,
and sends (z,y1,y2) to C .

8 C verifies if дz
?

= (X s · y1) mod q, and if

Y z
?

= (Z s · y2) mod q. If checks verify, C accepts the

response as valid, asks I to send signed transcript of

proof, πAI.
9 I sends

σAI = SignSKRI
(πAI = H (д | |VKRI | |VKAI | |ω1 | |y1 | |y2 | |s | |z))

to C .
10 end

receiver of the commitment. We assume h is fairly chosen in a

distributed manner by I , C .
Note that the ZKP and the signature on the ZKP can be replaced

by a single signature proof of zero-knowledge of knowledge [15],

but we do not discuss this optimization in this paper.

B UC FUNCTIONALITIES AND ANALYSIS
The notion of UC security is captured by the pair of definitions

below:

Definition B.1. (UC-emulation [12]) Let π and ϕ be probabilistic

polynomial-time (PPT) protocols. We say that π UC-emulates ϕ if

for any PPT adversary A there exists a PPT adversary S such that

for any balanced PPT environment Z we have

EXECϕ,S,Z ≈ EXECπ ,A,Z

Definition B.2. (UC-realization [12]) Let F be an ideal function-

ality and let π be a protocol. We say that π UC-realizes F if π
UC-emulates the ideal protocol for F.

We describe the functionalities of FSurveil: F
SAMPL

zk , Finit, Fcreate,

FBC. We assume that FSurveil maintains a table τ , with information

about the individuals being surveilled, and the surveillance orders.

A single row of the table would look like: (VKRI, SO, soid) where
soid denotes the id number of the SO which is associated with

VKRI. We use ⊥ to denote unresponsive parties, malformed replies

to the ideal functionalities, and ideal functionalities returning fail

messages to parties.
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Protocol 11: Setup of (PIi ) keypair.

Inputs :Public parameters: Group

G, |G| = q,д,h ∈ G,VKAI, SKAI.

Claim : VKPIi was generated by someone with

knowledge of SKAI, SKPIi .

Witness : SKAI, SKPIi .

Output :Signed ZKP: SignSKAI
(πPIi ).

Parties :C and I
1 for i ∈ [1..m] do
2 I picks a′′ ← Zq , sets SKPIi = a′′, and VKPIi = д

a′′
.

3 begin
4 I parses SKAI as a

′
and VKAI as д

a′
.

5 I picks ω2 = д
a′ ·a′′

. I sends DDH tuple

(д, zkpVerf = (Y = дa
′

, P = дa
′′

,Q = ω2)) to C .
6 C picks a challenge s1 ← Zq , and sends Com(s1) to I ,

where Com is a Pedersen commitment.

7 I picks r ′
1
← Zq , computes y′

1
= дr

′
1 mod q, and

y′
2
= дa

′′ ·r ′
1 mod q, and sends y′

1
,y′

2
to C .

8 C sends s1 to I .

9 I verifies Com, computes response:

z1 = a′ · s1 + r
′
1
mod q, and sends (z1,y

′
1
,y′

2
) to C .

10 C verifies if дz1
?

= (Y s1 · y′
1
) mod q, and if

Pz1
?

= (Qs1 · y′
2
) mod q. If checks verify, C accepts the

response as valid, asks I to send signed transcript of

proof, πPIi .

11 I sends σPIi = SignSKAI
(πPIi =

H (д | |VKAI | |VKPIi | |ω2 | |y
′
1
| |y′

2
| |s1 | |z1)) to C .

12 end
13 end

FSAMPL

zk : We define our ideal functionality for zero-knowledge

proofs, FSAMPL

zk , based on the ideal zero knowledge functionality,

Fzk defined by Canetti et al. [14]. While [14] deals with generic

relations, our FSAMPL

zk is restricted only to discrete-log relations,

and also involves the ideal functionality writing the claim to the

shared table τ . FSAMPL

zk is given in Figure 5, and the Fzk functional-

ity of [14] is given in Figure 6.

FSAMPL

zk is parametrized by a prime-order cyclic groupG, |G| = q,
д ∈ G, a ∈ Zq , and a session id, sid . The prover, I sends a claim to

be proven, VKRI to Fzk, and a witness a. Fzk checks if д
a = VKRI,

i.e., if the claim is correct and forwards VKRI to the verifier C and

the ideal-world adversary S, and writes VKRI into table τ .

Functionality FSAMPL

zk
FSAMPL

zk proceeds as follows, running with prover I , verifier
C , an adversary S. Let G be a prime-order cyclic group, д ∈ G,
|G| = q, and a ∈ Zq .

(1) Upon receiving (VKRI, sid,a) from I , if дa = VKRI,

send (VKRI, sid) to C and S, else exit. Write (VKRI) to

table τ and exit.

Figure 5: Ideal functionality for ZKPs in SAMPL

Fzk as given in Figure 6, is parametrized by a relation R, and a

session id, sid . The prover, P sends a claim to be proven, x to Fzk,

and a witnessw . Fzk checks if R(x ,w) = 1, i.e., if the claim is correct

and forwards x to the verifier V and the ideal-world adversary S.

Functionality Fzk
Fzk proceeds as follows, running with a prover P , verifier V ,

and an adversary S, and parametrized with a relation R:

(1) Upon receiving (zk − prover, sid,x ,w) from P , if

R(x ,w) = 1, send (zk − proof, sid,x) to V and S and

exit. Otherwise exit.

Figure 6: Ideal functionality for ZKPs [14]

Finit: The Finit ideal functionality described in Figure 7, inter-

acts with J ,L, and C , initiates the process for creating a SO , and
posts the SO to the BC. L initiates contact with Finit by sending a

(create − IO, evidence,VKRI) request tuple to Finit. Finit forwards

the request to J , who can accept or decline it. If J accepts, Finit
creates an intermediate order IO = (VKRI, evidence) and forwards

the IO to C . C can either accept or decline the IO . If either J or C
declines the IO request, Finit aborts the execution and exits. If C
accepts, Finit checks ifVKRI was deposited in the shared table τ by

FSAMPL

zk .

If yes, it means VKRI was verified by FSAMPL

zk . Finit then gener-

ates a key K ← {0, 1}λ , generates a string regarding the surveil-

lance order, data← {0, 1}λ , which includes evidence provided by

L, crimes committed by VKRI, reason for sealing, etc. It also gen-

erates metadata, which includes the date the SO will be unsealed.

Finit writes (SO, soid) to the table τ , in the VKRI row. Finit then

creates the SO tuple: (metadata,C = EK (VKRI, data)), sends (K ,C)
to J ,L,C , calls FBC and posts the SO on the BC. Finally, when the

SO needs to be unsealed, Finit proactively contacts I , whom VKRI
belongs to, and gives her the decrypted contents of the SO .

Fcreate: Fcreate is given in Figure 8. Fcreate creates a request

SR and response SRR. L first contacts Fcreate for creating an SR
by sending VKRI, upon which Fcreate looks up table τ for an SO
corresponding to VKRI. If none has been entered by Finit, that

means L is not authorized to surveil VKRI, and Fcreate returns ⊥

to L. Else Fcreate proceeds with generating SR and forwards SR to

L and C . At this point C is expected to respond to SR with VKRI’s

emails, batch information, and Merkle tree information required to

verify the emails are from the correct batches.

We represent all this information by a string, records. IfC ignores

the request, Fcreate will write C’s identity to BC, along with the

associated SO (this meansC is behaving maliciously). IfC responds

with the records, Fcreate will first verify that the records belong to

the surveillance time-period as given in the metadata part of the
SO . If verification succeeds, Fcreate will create the SRR, which will

be sent to L and C . Finally Fcreate posts the hash of SR, SRR to BC
respectively.

FBC: The blockchain functionality is given in Figure 9. FBC re-

ceives messages from Finit and Fcreate. FBC writes tuples to the

blockchain, and sends a copy of the new block, B, to parties J ,L,C, I .
This is done by sending (update,B). The party can either accept the

update, or decline (unresponsive, disconnected, or non-cooperating
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Functionality Finit

(1) L sends Finit a tuple requesting for an IO ,
(create − IO, evidence,VKRI), which Finit forwards

to J . J replies with either (accept,VKRI) or ⊥. If J
responds with ⊥, Finit returns ⊥ to L and exits.

(2) If J accepts the IO request,Finit creates an intermediate

order IO = (VKRI, evidence) and sends it to C . C can

either send (accept) or ⊥ to Finit. If C sends (accept),
Finit checks if VKRI is present in table τ . If yes, Finit
proceeds to the next step. If either C sends ⊥, or VKRI
is not present in τ , Finit sends ⊥ to J ,L,C and exits.

(3) Finit picks a symmetric key, K ← {0, 1}λ , and gener-

ates data← {0, 1}λ creates a surveillance order tuple,

SO = (metadata, (C = EK (VKRI, data)), and picks an

soid ∈ Z+. Finit writes (SO, soid) to τ in theVKRI row.

Finit sends (K ,C) to J ,L,C . Finit calls FBC and writes

SO to the blockchain.

(4) At the time of unsealing of SO , Finit sends I a tuple

SO = (metadata,VKRI, data) and exits.

Figure 7: Ideal functionality for issuance of SO .

Functionality Fcreate

(1) L sends a tuple (create − SR,VKRI) to Fcreate. Fcreate
looks up the SO corresponding to VKRI in τ . If none
exists, Fcreate sends ⊥ to L and exits. Else, Fcreate gen-

erates an SR = (SO,VKRI) and forwards it to L and

C .
(2) C replies to Fcreate with a tuple (VKRI, records ←
{0, 1}λ), where records ← {0, 1}λ denote VKRI’s

emails, and verification metadata. If C replies with ⊥,

Fcreate will call FBC and write (SO,C) to the BC and

exit.

(3) In response to C’s tuple, Fcreate verifies records, and
creates an SRR = (SO, records) tuple, and forwards to

L and C .
(4) Fcreate calls FBC, posts H (SR) and H (SRR) to the BC

and exits.

Figure 8: Ideal functionality for creating SR, SRR.

parties). When a dormant party wishes to update itself, it can re-

quest a copy of the full blockchain by sending a read message to

FBC.

B.1 Discussion and Analysis
We now briefly discuss the correctness of our ideal functionalities,

some of our motivating design choices, including aspects that may

seem unusual.

B.1.1 Correctness. The privacy properties our system aims to pro-

vide are accountability for L and C , protection against a forgetful J
who might forget to unseal orders, and protection against a mali-

cious I andC . The design of our ideal functionalities need to capture
these properties.

Functionality FBC

(1) FBC receives three kinds of write messages: Finit
writes SO , Fcreate writes (SO,C) and Fcreate writes

(H (SR),H (SRR)). FBC writes the tuples to the

blockchain and sends a copy of the newest block B
to all parties, J ,L,C, I by sending a tuple (update,B).

(2) Each party either replies with (agree,B) or ⊥. In the

former case, the party updates the local copy of the

blockchain, and is synced with the global blockchain.

However if the reply was ⊥, the party now has an

outdated copy of the blockchain.

(3) In the event that an outdated party wants to get synced

with the blockchain, it sends a message (read) to FBC,

FBC replies with (update,B′), where B′ is the copy of

the entire blockchain.

Figure 9: Ideal functionality for blockchain

Accountability is provided by the fact that Fcreate generates the

SR and SRR, thus ensuring that no data is over-requested by L,
or over-shared by C , both in terms of redundant data belonging

to the same user, or other users’ data. Finit creates the SO and

guarantees that the SO will get unsealed byFinit before it exits, thus

providing protection against forgetful J . Since FSAMPL

zk checks the

witness and generates the ZKP for eachVKRI, it ensures that a user

cannot create a fake ZKP for VKRI that passes verification, yet the

corresponding SKRI cannot be used for decrypting the user’s email

records. Protection against a maliciousC which tries to include fake

data in an SRR is provided by Fcreate, which verifies C’s returned
user information before creating an SRR.

B.1.2 Peculiar design choices. (1) In Finit, J ,C can return ⊥ to Finit
in Step 1 and Step 2 respectively: This is to model the fact that in

the real-world, J has the right to refuse a surveillance request by L,
and C has the right to refuse or appeal an intermediate order by J .
(2) Finit creates an SO , and Fcreate generates the SR and SRR for

SO , but only after being contacted by L (Step 1 of Fcreate): This

is because in the real-world, L might get an SO authorized by J ,
but may choose not to follow it up with any action, i.e., eventually

not conduct any surveillance, e.g., because L needs to invest its

limited resources in higher-priority matters, budget cuts after SO
was issued, etc.

(3) Fcreate writes C’s identity to the BC if C doesn’t respond with

I ’s email records in Step 2 of Fcreate: We assume that I is an (email)

customer of C , and C will have email records associated with I for
the surveillance period. These emails are stored only with C . If
C deliberately chooses not to respond to, or refuses an SR, after
having accepted the IO that the SR is a follow up on (Finit, Step 2),

then that can only be construed as malicious behavior on the part

ofC . Hence Fcreate will expose maliciousC’s identity on the public

BC.

B.2 Proof
We now give the proof of Theorem 7.1.

Proof : Our goal is to describe a simulator S such that for any real-

world A running with SAMPL, Z cannot distinguish A from an
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ideal-world S running with FSurveil. S runs A internally, simulates

all inputsA is expecting, and givesA’s outputs to FSurveil, who will

complete the simulation in the ideal-world. S reflects the choices of

A in the ideal-world, and reflects the protocol outcomes and aborts

of the ideal-world in the real-world. If A cheats, S aborts.

That is, any attempt byA to cheat in the real-world will result in

the protocol aborting in the both, the ideal and real worlds. Hence

it follows that no PPT Z can distinguish between EXEC
SAMPL,A,Z

and EXECFSurveil,S,Z. We now consider a complete run of the pro-

tocol, starting from when I sets up her RI,AI,π keypairs with C
and ending when L receives the validated SRR from a subset of E.

First, S needs to create keypairs (VKRI, SKRI), (VKAI, SKAI),

(VKPIj , SKPIj ), j ∈ [1..m]. S simulates a UC-secure digital signature

scheme, Ssig, that UC-realizes the ideal digital signature functional-

ity, Fsig (see [13] for UC-secure signatures definitions), and creates

the keypairs. The VKRI,VKAI and VKPIj will be handed over to A.

If A wishes to corrupt I , SKRI, SKAI and SKPIj will also be given to

A.

Swill also have to generate the zero-knowledge proofs associated

with VKAI and VKPIj . S runs the steps of Protocol 10, computes

πAI = (H (д | |VKRI | |VKAI | |ω1 | |y1 | |y2 | |s | |z)) and generates σAI by
calling Ssig. S then gives πAI and σAI to A along with the keys. S

follows a similar procedure for generating the πPIj ,σPIj of Proto-
col 11. In the ideal-world, S will call Fsig to generateVKRI, and call

FSAMPL

zk for generating the ZKP corresponding toVKRI. If A rejects

the ZKPs or signatures, S aborts the execution.

S then needs to setup shared keyKCI of Protocol 1, and pass it to

A, ifA has corrupted eitherC and/or I . S creates a keyK ← {0, 1}λ

by calling Finit, and passes it to A. Finally, S generates a random

batch-size bSize and gives to A. This completes the simulation of

the setup phase.

Next, S needs to pass on inputs to A during the SO creation

phase, and simulate the corresponding actions in the ideal-world

(actions of Protocol 3). If A has corrupted L, A will generate the

SR = (VKRI, evidence), else, S generates the SR = (VKRI, evidence)
and gives the SR to A. We recollect from our adversary model that

J is forgetful, but not malicious. In other words, A cannot corrupt

J .
Once J (impersonated by S) has received the SR from A, J will

validate it, and decide whether to accept it or not. Once J decides, it
will give its output to A. A will then pass on the IO to C , through
corrupted L.C will decide whether to accept the IO or not. If A has

corrupted C , then this communication is handled locally by A, and

need not be simulated. If C is honest, its action will be simulated

by S.

C responds to the IO , and generates an SRR = (VKAI | |πAI | |σAI),
and sends SRR to J ,L. In the ideal world, S calls Finit, which creates

an IO and sends to J ,L,C . IfA cheats, i.e., includes a wrong πAI,σAI
inside the SRR, then Swill send a correspondingmalformedmessage

to Finit, which will then abort (Step 2 of Figure 7), and S aborts

the execution of A. S then generates the SO as a honest J would,
and gives the final SO to A. If either of C or L are corrupted by

A, or if a subset of E are corrupted by A, S will send the K JLC
and/or KE JLC to A. We do not give details of the SO generation by

S, since it is straightforward (simulate Ssig for signatures, Fsig in

the ideal-world, etc.). If at any step, the signatures in the SO sent

by A do not verify, S aborts. In the ideal-world, S calls Finit who

will in turn call FBC and posts the SO to the blockchain.

The next step for S is to simulate the storage of I ’s emails on C
(Protocol 2). There are three cases to consider:

(1) Case 0: If both I and C are corrupted by A, this is handled

locally by A, and does not need to be simulated.

(2) Case 1: If C is corrupted, but I is not, S creates I ’s outputs,
i.e., for each Mx ∈ MbNum,x ∈ [1..bSize], S generates a Cx .

A, playing the role of corrupted C will create a Merkle hash

tree with the H (Cx ) at the leaves, which will be checked by

S. S will verify the root-hash and will abort of there is any

mismatch. Else, S will sign the root-hashes by simulating

Ssig. In the ideal world, S will get random strings signed by

calling Fsig.

(3) Case 2: If I is corrupted, but C is not, A does I ’s leaf en-
cryptions, creates Cx ’s, etc., and gives to S. S generates the

corresponding root-hashes for the Merkle trees, and sends

the root-hashes to A for signing. A is expected to sign the

root-hashes. IfA refuses to sign the root-hashes, Swill abort.

Now, S needs to simulate the creation and verification of the SR
(Algorithm 4, and Algorithm 5). For this, S will retrieve the SO , ι,
etc., and construct a tuple SR = (SO | |ι | |VKRI | |C) and forward it to

a subset of E. If L is corrupted, A will construct the SR tuple. If A’s

SR tuple is malformed, S aborts. In the ideal world, S calls Fcreate,

who generates the SR. At this point, S ⊆ E needs to validate SR. Per
our adversary model, A can corrupt a minority of members in S.
Here there are two cases to consider:

(1) Case 0: None of S are corrupted: S verifies SR (if SR was gen-

erated by A in the previous step), and checks it against the

SO S had created. S simulates Ssig and creates the signature

σSSR , and gives it to A. In the ideal world, S calls Fsig and

creates the signature.

(2) Case 1: A (minority) subset of S are corrupted by A. For

the minority, A will check the SR. If A rejects the SR, or
refuses to produce a signature σSSR , for any reason, S aborts,

and sends a malformed request to Fcreate, which will abort

the simulation in the ideal world. Communication among

members of corrupted minority of S is controlled by A and

need not be simulated. If A behaves properly, i.e., validates

the SR and produces signature σSSR , Swill simulate the honest

majority, and the ideal world similar to Case 0.

The next step is for S to simulate C producing an SRR, and a

subset of E verifying the SRR. S first retrieves the SO it created.

Here again there are two broad cases:

(1) Case 0: If C is uncorrupted, S retrieves the Cx ∈ Cbn ;x ∈
[1..bSize], adds the Cx ’s, sibling hashes, etc. to the SRR tuple,

the ZKP tuple it created before, calls Ssig, signs the SRR tuple,

and gives the H (SRR), along with the signed SRR to A. A

then passes it on to S ⊆ E, who will accept or reject it. If all

members of S are honest, S will validate the signed SRR and

we are done. In the ideal world, S will call Fcreate, F
SAMPL

zk ,

and Fsig to create and sign the SRR, respectively.
(2) Case 1: If C is corrupted, A will create the SRR; the SO is

given to A. Firstly, A can return a verification fail on the

SO created by S. If this happens, S will abort the simulation.
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If A chooses to proceed with the simulation, A will create

the Merkle hash trees with the H (Cx ) at the leaves, sibling
hashes, etc..Awill give the ZKPs, πAI,πPIj and signatures on
the ZKPs, σAI,σPIj to S. If any do not verify, S aborts. A will

generate the final SRR, and H (SRR). If the SRR is malformed,

in the ideal-world, S will cause Fcreate to abort by having C
not reply to an SRR. Fcreate will write malicious C’s identity
to the blockchain by calling FBC.

If a minority of S ⊆ E are corrupted, A can return a fail on the ZKP

verification, upon which S aborts. If A rejects the SRR, or refuses

to produce a signature σSSRR , S aborts. In the ideal world, S will

corrupt C such that C does not repond to Fcreate’s request for an

SRR, upon which Fcreate will write C’s identity to the blockchain

by calling FBC, and will then abort. If A validates the SRR and

produces signature σSSRR , S will simulate the honest majority. In the

ideal world S will call Fsig. Lastly, S will give KCI to A, if A had

not already corrupted C and/or I , and obtained KCI earlier. This
concludes our proof.
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