
RACED: Routing in PAyment Channel NEtworks Using
Distributed Hash Tables

Kartick Kolachala

New Mexico State University

Las Cruces, NM, USA

kart1712@nmsu.edu

Mohammed Ababneh

New Mexico State University

Las Cruces, NM, USA

mababneh@nmsu.edu

Roopa Vishwanathan

New Mexico State University

Las Cruces, NM, USA

roopav@nmsu.edu

ABSTRACT
The Bitcoin scalability problem has led to the development of off-

chain financial mechanisms such as payment channel networks

(PCNs) which help users process transactions of varying amounts,

including micro-payment transactions, without writing each trans-

action to the blockchain. Since PCNs only allow path-based trans-

actions, effective, secure routing protocols that find a path between

a sender and receiver are fundamental to PCN operations. In this

paper, we propose RACED, a routing protocol that leverages the

idea of Distributed Hash Tables (DHTs) to route transactions in

PCNs in a fast and secure way. Our experiments on real-world

transaction datasets show that RACED gives an average transac-

tion success ratio of 98.74%, an average pathfinding time of 31.242

seconds, which is 1.65 × 10
3
, 1.8 × 10

3
, and 4 × 10

2
times faster

than three other recent routing protocols that offer comparable

security/privacy properties. We rigorously analyze and prove the

security of RACED in the Universal Composability framework.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols; Dis-
tributed systems security; Security protocols.

ACM Reference Format:
Kartick Kolachala, Mohammed Ababneh, and Roopa Vishwanathan. 2024.

RACED: Routing in PAyment Channel NEtworks Using Distributed Hash

Tables. In ACM Asia Conference on Computer and Communications Security
(ASIA CCS ’24), July 1–5, 2024, Singapore, Singapore. ACM, New York, NY,

USA, 16 pages. https://doi.org/10.1145/3634737.3637653

1 INTRODUCTION
The development of cryptocurrencies, which began with the Bit-

coin white paper [39] in 2009, has disrupted banking and financial

processes across the globe. As of February 2023, Bitcoin’s market

capitalization stands at 453 Billion USD [10]. However, the through-

put of transactions involving cryptocurrencies is extremely low due

to the high latency of transaction confirmation on the blockchain.

For instance, the transaction processing speed of Bitcoin is 5-7

transactions per second and that of Ethereum is 15-30 transactions

per second [7–9, 11]. This is in sharp contrast with traditional fiat

currency’s throughput, e.g., Visa processes over 65,000 transactions

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0482-6/24/07.

https://doi.org/10.1145/3634737.3637653

per second [60]. One of the most promising solutions to this prob-

lem is off-chain payment channels. Two parties create a payment

channel on a blockchain with some initial balance, following which

they can send an unlimited number of payments to each other using

that channel without writing anything to the blockchain. Access to

the blockchain is only needed either if there is a dispute or the two

parties involved decide to close the channel.

This idea can be extended to enable transactions between two

parties that may not have a payment channel currently open be-

tween them. Decentralized payment channel networks (PCNs) that

enable transitive payments have been proposed such as [19, 26, 35,

37, 51], where two unconnected users can send/receive payments

if there exists a path comprising of several users with payment

channels between them. The first such network was the Lightning

Network, which operates on top of the Bitcoin blockchain [26].

Lately, Lightning Network has become one of the fastest-growing

PCNs. Between January 2021 and December 2021, there were a total

of 28 Million unique channels opened in the Lightning Network,

with an average of 73,733 new channels created every day. The

number of unique nodes (unique public key pairs) involved in chan-

nel opening during this period was 6.5 Million [12]. The market

capitalization of Lightning Network is USD 1 Million as of 2023.

Several other payment channel networks and credit networks have

been developed, which have later evolved into blockchain-based

decentralized financial ecosystems, such as Ripple [44], which has

a current market value of 20 Billion USD [47], (increased from 9.97

Billion USD in 2017 and peaked at 64 Billion USD in April 2021) and

Stellar [55]. Between January 2021 to December 2021, there were a

total of 15 Million transactions recorded on the Ripple ledger, with

an average of 1 Million transactions recorded every month [45].

These numbers indicate the size and growth of PCNs.

Amajor advantage of PCNs is that they facilitatemicro-payments

between users that can be as small as 10
−7

BTC [30]. Apart from

this, the fees charged by PCNs to route payments are a fraction of

the on-chain transaction fees charged by the underlying blockchain.

The problem of finding an efficient route between a sender and

receiver in a PCN is challenging and has attracted considerable

attention from the research community [22, 35, 42, 43, 61]. While

there have been many elegant routing protocols developed recently

for PCNs, each one comes with its own set of limitations. Some rout-

ing protocols do not provide security of transactions nor privacy of

the users [51, 61, 62], while others do not support concurrent trans-

actions [29, 35, 53, 61, 62]. Some routing protocols need trusted

entities to route payments [35], while others implement source

routing, in which the network topology needs to be known to all

nodes [61]. In this paper, we present a novel routing mechanism

1

https://doi.org/10.1145/3634737.3637653
https://doi.org/10.1145/3634737.3637653

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Kartick Kolachala, Mohammed Ababneh, and Roopa Vishwanathan

called RACED that uses distributed hash tables (DHT) to route the

payment from the sender to the receiver in PCNs.

Current routing protocols for PCNs traverse the entire network

in the worst case to route a payment from a sender to a receiver,

with a maximum path length of 𝑛 − 1 hops, in a network of 𝑛 nodes.

Using DHTs will help us in reducing this path length since the

complexity of locating any node in a DHT is logarithmic in the

number of nodes in the DHT. This consequently reduces the overall

pathfinding time (time taken to find paths between two nodes in

the network) and routing time (time taken to route the payment).

All PCN routing protocols have an overall routing complexity

that is linear in the number of nodes in the PCN in the worst case.

Reducing this bound to sub-linear while preserving the privacy of
nodes and network topology and also ensuring the atomicity of the

payments is a significant research challenge.

Our contributions are:

1) We design an efficient decentralized routing protocol, RACED
with no trusted entities, using DHTs to reduce the routing time from

𝑂 (𝑛) to𝑂 (log 𝑟 +𝑢), where 𝑛 is the total number of users/nodes in

a PCN, 𝑟 is the total number of routing helpers (untrusted nodes

that aid transaction routing), and 𝑢 is the number of non-routing

helper nodes.

2) RACED preserves the privacy of nodes and their channel balances,

as well as maintains privacy of the network topology.

3) We experimentally demonstrate the scalability and efficiency of

RACED using transaction data from the Ripple network [45], and

prove its security in the Universal Composability (UC) framework.

Outline: In Section 2 we discuss relevant related work, in Sec-

tions 3 and 4, we explain our system and adversary models respec-

tively. In Sections 5 and 6 we present the construction of RACED,
in Section 7, we present our experimental evaluation. In Section

8 we analyze the security of RACED in the UC framework, and in

Section 9 we conclude the paper.

2 RELATEDWORK
Routing protocols with security guarantees: The main security

property that we want for routing protocols in PCNs is that honest

parties should not lose funds because of malicious behavior by other

parties in the system. To this end Malavolta et al. [35] proposed
a routing protocol leveraging trusted entities called landmarks to
provide secure routing between the sender and the receiver. The

landmark finds a path between itself and the sender and itself and

the receiver; these sub-paths are combined to get the full path. The

idea of using untrusted entities to facilitate routing has been pro-

posed by Panwar et al. in [42] that uses a set of well-connected nodes
called routing helpers to facilitate routing. However, this protocol

has a very high communication overhead during the pathfinding

phase, in addition to using the blockchain as an auditing mechanism

which makes it very expensive to deploy in the real-world.

Roos et al. proposed a routing mechanism in [51] that uses graph

embedding, where the routing is carried out by constructing a

spanning tree of the entire network. While this work improved

upon [35] by supporting concurrent transactions, the sender picks

a random amount to be transmitted along a path without knowing

whether the path has sufficient liquidity, which could lead to a high

rate of transaction failure. Besides, frequently needing to update

the embedding for a dynamic network topology results in a heavy

computational overhead. The routing protocol proposed by Pietrzak

et al. in [43] uses the idea of Private Information Retrieval (PIR).

The shortest paths between all the nodes are computed and stored

in trusted servers which incur a large storage overhead. A honest

majority is assumed among the servers. When a payment needs to

be routed, the sender queries these trusted servers for the available

list of shortest paths to the intended receiver. This would also

require the sender to download the complete network topology.

The protocol proposed by Subramanian et al. [57] leverages the idea
of distributed hash tables to replenish the depleted link weights

of nodes in a PCN, in a process called rebalancing, and does not

focus on pathfinding or routing of transactions, hence their work

is orthogonal to RACED. None of the aforementioned works can

route transactions in disjoint graphs.

Routing protocols with no privacy/security guarantees: There
are a few works that use breadth first search (BFS) or max-flow

algorithms to design routing protocols for PCNs [22, 29, 62] but do

not provide security/privacy of nodes in the PCN. Besides, using tra-

ditional max-flow algorithms such as Ford-Fulkerson (implemented

using Edmonds-Karp method) and Goldberg-Tarjan algorithms in-

cur significant overheads of 𝑂 (|𝑉 | |𝐸 |2) [15] and 𝑂 (|𝑉 |3) [21] re-
spectively, in a graph 𝐺 (𝑉 , 𝐸), which is not scalable to large PCNs.

The ideas proposed by Abdelrahman et al. in [2–4] present dis-

tributed versions of Dijkstra’s shortest path algorithm, and the

minimum cost flow problem, both of which can be potentially

applied to perform routing in PCNs. The distributed version of Di-

jkstra’s shortest path algorithm has a computational complexity of

𝑂 (|𝑉 |2) +𝑂 (|𝑉 |), which makes it non-scalable to large scale PCNs.

The computational complexity of the distributed version of the

minimum cost-flow problem is 𝑂 (|𝑉 |8𝑙𝑜𝑔(|𝑉 |)) and the communi-

cation complexity is𝑂 (|𝑉 |10𝑙𝑜𝑔(|𝑉 |)), which makes it infeasible to

be applied for large scale PCNs. Due to space constraints, we give a

detailed descriptions of the ideas proposed in [2–4] in Appendix A.

The idea proposed in [24] by Kadry et al. uses a machine learning-

based approach to find a path between the sender and receiver. This

work does not focus on route discovery but instead focuses on

selecting the best path amongst the ones that have already been

chosen using BFS. The work proposed in [53] uses buffers (called

Spider Routers) in the form of queues to store and route transactions.

However, it makes transactions wait for an indefinite amount of

time before they are routed, besides it does not take into account the

privacy of the nodes involved in a transaction. Other works such

as [64] and [17] have been proposed that do not provide privacy of

nodes in the PCN.

RobustPay+ [66] and its preliminary version, Robustpay [65] fo-

cus on building a routing protocol for PCNs that supports multiple

paths from a sender to a receiver from which the sender chooses

only one path to route the payment. Their main contribution lies in

constructing multiple paths such that there is no overlap in terms

of nodes between any pair of paths. This is done to prevent trans-

action failures caused by nodes becoming unresponsive or going

offline in the PCN. The idea proposed by Chen et al., MPCN-RP

[14], focuses on building a source routing protocol that minimizes

the transaction fees. This protocol presents a modified version of

Dijkstra’s algorithm, in which the length of the path (in terms of

hop-count) is taken into consideration along with the edge weights.

2

RACED: Routing in PAyment Channel NEtworks Using Distributed Hash Tables ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

Table 1: Comparison of Routing Protocols in PCNs

Routing protocols Concurrency Privacy Balance

secu-

rity

Topology

privacy

Avoids

source

routing

Decentralized Atomicity Disjoint

graphs

MPCN-RP [14] ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗

Eckey et al. [17] ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗

Vein [22] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Auto tune [23] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Kadry et al. [24] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

FSTR [29] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

SilentWhispers [35] ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗

Blanc [42] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

SpeedyMurmurs [51] ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗

Spider [53] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Flash [61] ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗

Coinexpress [62] ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗

Webflow [64] ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗

Robustpay [65] ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗

Robustpay+ [66] ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗

RACED ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Unlike Robustpay and Robustpay+, [14] constructs only a single

path from the sender to the receiver and the entire amount is routed

along this path. Auto-Tune [23] proposed by Hong et al. is a routing
protocol that supports structured payments. Auto-Tune computes

a total of 𝑘 shortest paths between a sender and receiver where

𝑘 , an arbitrary number, is decided by the sender. Unlike [14], the

amount to be transacted is split across these multiple paths and is

routed to the receiver. This work does not take into account the

presence of redundant nodes along the 𝑘 shortest paths, which

makes it different from the ideas in [65, 66]. We refer the reader to

the Table 1 for the differences between RACED and [14, 23, 65, 66].

In Table 1, we give a qualitative comparison between RACED
and other routing protocols based on the comparison metrics de-

fined as follows. 1) Concurrency: Concurrency is achieved when

several transactions are routed simultaneously. 2) Privacy: Privacy

is achieved when the identity of a node is not known to any other

node in the network except its immediate neighbors. 3) Balance

Security: Security is achieved when no honest party loses funds

because of malicious behavior by other parties in the system. 4)

Topology privacy: Topology privacy is achieved when no node in

the network knows the entire network topology. 5) Avoids source

routing: Source routing is avoided when the sender does not con-

struct the entire path from itself to the receiver. 6) Decentraliza-

tion: Decentralization is achieved when there is/are no central

entity/entities that construct the path for the sender. 7) Atomicity:

Atomicity is achieved when all the link weights of the nodes along

the transaction path go back to the state that they were in before

the transaction was initiated in the event of a transaction failure. 8)

Disjoint graph applicability: A routing protocol is said to be appli-

cable to disjoint graphs, if it works even when the network graph

is not fully connected. For the routing protocols in Table 1, we con-

jecture that support for concurrency, privacy and atomicity can be

provided (in the protocols that do not already have them) by using

HTLCs [31] and the identity generation mechanism used in this pa-

per. Modifying these protocols to achieve the remaining properties

of topology privacy, avoiding source routing, decentralization, and

making them applicable for disjoint graphs is non-trivial and is not

a part of their design goals.

3 SYSTEM MODEL

Charlie (26)Denise (1)

Daniela (52)

Alice Joe Charlie150
150 200

100 Denise
150 100

Bob

100

15
0

George 200
150

200

200

Daniela
200

150

Figure 1: Three routing helpers in a DHT overlay over a PCN

In this section, we introduce the components of RACED, the parties
involved, and the terminology we use in the rest of the paper.

A PCN can be modeled as a directed graph where a directed edge

from a node 𝑖 to 𝑗 with an edge weight of 𝛼 signifies the balance of

node 𝑖 in the payment channel between 𝑖 and 𝑗 , denoted by 𝑙𝑤𝑖, 𝑗 =

𝛼 . For instance, referencing Figure 1, in the link between Denise

and Bob, 𝑙𝑤Bob,Denise = 100 and 𝑙𝑤Denise,Bob = 150.

3.1 Parties
Routing Helpers (RH): In RACED, a routing helper (RH) is a node
that helps the sender and the receiver route transactions between

each other. We define a dynamic setRH that contains all the routing

helpers. RHs in RACED are similar to the “routing nodes" or tram-

poline nodes used by the real-world PCN, Lightning Network [28].

3

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Kartick Kolachala, Mohammed Ababneh, and Roopa Vishwanathan

If a node volunteers to become an RH, it needs to join a Distributed

Hash Table (DHT) overlay and establish channels with a few other

nodes. This is independent of the underlying PCN topology. We do

not assume RHs are trusted, nor do we assume any honest majority

among them. In RACED, the RHs charge a fees for providing their
services and RACED is resilient to (n-2) RH failures for “n" RHs.

We organize all RH ∈ RH as part of a DHT to ensure that they can

route transactions in 𝑂 (log |RH|) time, using consistent hashing

to locate each other. In this paper we instantiate the DHT using

Chord [56], however, there are no technical impediments to using

other DHT protocols such as Pastry [52], Kademlia [36], Tapestry

[67] and more. In Figure 1, we depict three routing helpers, Charlie,

Denise and Daniela. The numbers adjacent to the routing helpers

represent their unique identifiers inside the DHT ring.

Sender and Receiver (sender, receiver): With respect to Figure 1,

the sender, Alice, is a node in the PCN who initiates a payment that

needs to be routed across the network to receiver Bob. She only

knows the link weights of her immediate neighbors. Once a path

has been found between Alice and Bob using RACED, Bob gener-
ates parameters needed for establishing HTLCs (Hashed Time-Lock

Contracts) [31] to complete the payment process. The purpose of

establishing HTLC is to ensure atomicity of payments. We assume

Alice and Bob can communicate with each other using a secure

out-of-band communication channel, but can only do path-based

routing of transactions. This is similar to real world PCNs, such

as the Lightning Network [26], where out-of-band communica-

tion channels are used by the receiver to communicate the digest

required to complete the HTLC payment to the sender.

End Routing Helper (endRH) and Nearest Routing Helper
(nearRH): endRH is the routing helper from the DHT ring that is

closest to Bob based on hop count. Similarly, nearRH is the nearest

routing helper based on hop count to Alice. If we assume that the

path taken is Alice→ Joe→ Charlie→ Denise→ Bob, the endRH
is Denise and nearRH is Charlie.

Blockchain: RACED can be deployed on any permissioned or per-

missionless blockchain that supports HTLCs. RACED is compatible

with the Lightning Network, which runs on top of the Bitcoin

blockchain. In RACED we only use the blockchain for dispute res-

olution and it is not used during transaction routing and processing.

3.2 Setup and Terminology
Keys setup: In RACED, every user 𝑖 in the PCNhas a long-term sign-

ing and verification keypair denoted by (sk𝑖 ,vk𝑖), and a pseudony-

mous, temporary signing and verification keypair (SK𝑖 ,VK𝑖). In
a decentralized network, each node generates its own keys.

1
A

node’s long-term public key in RACED is used within the network

to establish an encrypted and authenticated connection with its

neighbors. The temporary keys in RACED provide pseudonymity

and hide the real identity of the node from its non-neighboring

nodes in the PCN. To enable this, the temporary verification key is

signed by the long-term signing key to produce a signature: Signsk𝑖
(VK𝑖)→ 𝜎 . Each user 𝑖 exchanges its temporary and long-term veri-

fication key with all its neighbors, who verify 𝜎 using 𝑖’s long-term

1
For instance, in transactions involving Bitcoin in the Lightning Network, each node

generates a long-term keypair on Bitcoin’s secp256k1 elliptic curve [32].

verification key. Two nodes that are not immediate neighbors, use

their temporary signing keys to sign messages and their temporary

verification keys to verify the corresponding signatures. If Alice

intends to route a payment to Bob, we assume both of them will

know each other’s real identities, since a sender will not typically

route a payment to an unknown receiver.

Immediate Neighbor: Consider two nodes 𝑖 and 𝑗 that have a

payment channel between them with the link weights denoted

by 𝑙𝑤𝑖, 𝑗 and 𝑙𝑤 𝑗,𝑖 . These two nodes are each other’s immediate

neighbors.

Pathfinding and routing times: We define the pathfinding time

as the time taken to find a path involving several intermediate

nodes between the sender and the receiver. Routing time is defined

as the time taken to route the payment after a path has been found.

Routing fees: In PCNs, every node charges fees for forwarding the

payment from its predecessor to its successor along the path; the

fee structure varies according to the PCN being used. For instance,

Lightning Network charges two types of fees, the base fee, which

is fixed irrespective of the transaction amount, and rate fees that

vary according to the amount being routed [27]. In this paper, we

assume a unit fee is charged per hop, making the routing fees and

the path length equal.

4 ADVERSARY MODEL
In this section, we outline the trust assumptions for the parties

involved in RACED, and state our security and privacy goals. The

sender and receiver in a transaction can be un-trusted and can ar-

bitrarily deviate from protocol steps. Either of them can choose to

abandon a transaction in-progress, or introduce delays in a transac-

tion, with the goal of locking up collateral along paths. In RACED,
we assume each sender and receiver have access to each other’s

real identities, and the receiver will know the amount, amt being
transacted between them, since users do not send payments to un-

known entities with unspecified amounts. All the nodes in the PCN,

including the sender and the receiver, will know the real identities

of all the routing helpers, RHs in the DHT ring, and will also know

the maximum amount that each RH can route to its finger table

entries. Every node in the PCN, including the routing helpers will

know the balances they have and will also know the balance of their

immediate neighbor in the payment channel between the node and

its immediate neighbor. In addition to this, the nodes in the PCN

present along the path for routing a transaction between a sender

and a receiver will know the real identities of all their immediate

neighbors and the amount being transacted between the sender

and receiver along that path. The nodes in the PCN that are not
along the path for a transaction between the sender and receiver

will only know the real identities of their immediate neighbors and

will not have access to any information regarding the transaction,

such as the amount, transaction id, etc.

The RHs in RACED can also be malicious. They can arbitrarily

deviate from the protocols, although we assume at least two RHs

will be available at a given point of time to route transactions. For

addressing distributed denial of service attacks where all the nodes

in a DHT are taken down by an adversary, we refer the reader

to existing mitigation strategies [6, 54, 59]. We also assume the

adversary will be economically rational, i.e., it will always try to

4

RACED: Routing in PAyment Channel NEtworks Using Distributed Hash Tables ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

maximize its profit. The nearRH knows the pseudonymous identity

of the sender and the endRH will know the pseudonymous identity

of the receiver. Other routing helpers (which are neither nearRH or

endRH) will know the amount being routed for a transaction if they

are present in the finger table of the nearRH or if they are present

in the finger tables of RHs which are present in the nearRH ’s finger

table. If a RH is present in both the finger table of nearRH and

endRH , it will have access to the amount being transacted.We now

give our security and privacy goals.

Defining our Security and Privacy Goals. 1) Balance Secu-
rity: No honest node along a transaction path should lose funds

even if all the other nodes, including the intermediaries, and/or

the sender, receiver, are malicious. If the nearRH or endRH turn

malicious at any point and decide to leak the identity of the sender

or the receiver, respectively, it will only reveal their pseudonymous

identities since the real identities of the sender and receiver are not

known to any RHs in the DHT ring. 2) Sender/receiver privacy:
The real identities of the sender and the receiver are only known

to each other and their immediate neighbors in the network. 3)

Link privacy: Every node only knows the balance in the channel it

shares with its immediate neighbors. 4) Atomicity: If a transaction
does not go through for any reason, all the link weights of the nodes

along the transaction path should go back to the state that they

were in before the transaction was initiated.

5 CONSTRUCTION
In this section, we present the challenges associated with leveraging

DHTs for secure routing in PCNs and we describe the key ideas

in RACED that solve these challenges and describe the detailed

construction of RACED.
To address the challenge identified in Section 1, our idea is to use

a DHT comprising of RHs which guarantees a logarithmic routing

time. We note that it is non-trivial to apply DHTs to perform secure

PCN routing due to the following challenges:

Challenge 1: DHTs were designed to facilitate information shar-

ing in a p2p network, whereas PCNs were developed for facilitating

financial transactions between users. Nodes in the DHT commu-

nicate with each other using the standard IPv4 communication

protocol. In PCNs, though nodes communicate with each other

using the same standard, they also need to exchange payments

between them for which the IPv4 communication standard cannot

be used. As a solution to this challenge, RHs in RACED open a

payment channel on the blockchain with each of the RHs in their

finger tables to facilitate payments.

Challenge 2: In DHTs, there is no notion of privacy; each peer

in the DHT knows the details of the file (information) segments

that every other peer is responsible for. Whereas in PCNs, the

local channel balance of a node is known only to its immediate

neighbor. In RACED, to safeguard its local channel balance in a

payment channel, each RH 𝑖 decides on a maximum amount that it

can transact with its finger table entry 𝑘 and only this maximum

amount is known to all the other nodes in the PCN, providing link

privacy to the RHs.

Challenge 3: In a DHT, the property of atomicity (defined in

Section 4) is not required since nodes only exchange information.

Whereas in PCNs atomicity is very important since it ensures that

no honest party loses their funds because of malicious behavior by

other parties in the system. In RACED atomicity is ensured since

RHs (and all the other non-routing helper nodes) process payments

between each other using HTLCs.

Challenge 4: Transacting money between nodes in the PCN

causes a depletion in the balance of node, whereas, no such deple-

tion exists in DHTs. We solve this challenge using the maximum

amount computation described in Protocol 1.

Addressing these challenges and utilizing DHTs to reduce the

overall routing complexity in PCNs requires careful design and

is non-trivial. In what follows, we first give a brief overview that

describes the working of RACED that solves all the aforementioned

challenges at a high level and we follow it up with a detailed de-

scription of its construction. For the reader’s easy reference, we give

a table of notations in Table 2. In RACED, we instantiate the DHT

using Chord [56]. Due to space constraints, we give an overview of

Chord in Appendix B.

Table 2: Notations

Notation Description
𝜆 Security parameter

amt Amount to be paid by

the sender to the re-

ceiver

RH Set of routing helpers

𝑛 Number of nodes in the

PCN

I𝑖 Set of immediate neigh-

bors of a node 𝑖 in the

PCN

(SK𝑖 ,VK𝑖), (sk𝑖 , vk𝑖) Temporary and

long-term sign-

ing/verification keypair

of node i

endRH , nearRH End routing helper and

nearest routing helper,

respectively

𝛿 Time interval for signa-

ture generation

max𝑖, 𝑗 Maximum amount that

can be transacted be-

tween nodes 𝑖 and 𝑗

hc𝑖, 𝑗 Number of hops be-

tween nodes 𝑖 and 𝑗

txid Transaction identifier

𝑡𝑐𝑖, 𝑗 Current timestamp for

signature created on

max𝑖, 𝑗
𝑡𝑣𝑖, 𝑗 Time until which the

signature created on

max𝑖, 𝑗 is valid

5

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Kartick Kolachala, Mohammed Ababneh, and Roopa Vishwanathan

5.1 Technical Overview
Let us consider a sender Alice in a PCN, as depicted in Figure 2,

who intends to route an amount, amt = 50 coins to a receiver, Bob.

We use RHs, Charlie, Daniela, and Denise that belong to a set RH,
to route the payment. During the key-generation and setup phase

(described in Protocol 6), each node creates a pair of long-term and

temporary signing and verification keys. The temporary identity

of a node is tied into the long-term identity as described in Section

3. This is done to hide the real identity of a node in the PCN from

its non-neighboring nodes, which helps in achieving the goal of

sender/receiver privacy as described in Section 4. In the DHT setup

phase (described in Protocol 1), the first node that volunteers to be

an RH establishes the DHT overlay by creating a unique identifier

(depicted as the number next to an RH’s name) and populating its

local hash table. This local hash table is termed as a node’s finger
table in Chord [56]. Since we use Chord to instantiate the DHT in

RACED, for terminological consistency, we refer to a node’s local

hash table as finger table in the rest of the paper (we give a detailed

description of Chord in Appendix B). All the subsequent nodes that

volunteer to be RHs join the DHT, create unique identifiers and

populate their finger tables with the identifiers of other RHs. The

RHs create signatures (using their long-term signing keys) on the

maximum amount that they are willing to route to the other RHs in

their finger tables. This is done to hide the actual channel capacities

between the RHs in the DHT, which helps us in achieving our goal

of link privacy.

Alice finds a path to the RH nearest to her, nearRH using any

of the existing constructions such as [35, 42, 51]. These existing

routing algorithms have an end-to-end worst-case pathfinding time

complexity of 𝑂 (𝑛), where 𝑛 is the number of nodes in the PCN.

Our goal in this paper is to improve this worst-case upper bound by

using DHTs. Inside the DHT, the worst case pathfinding complexity

is logarithmic in the number of nodes,𝑂 (log |RH|) which improves

the overall complexity of pathfinding. Hence, we focus on routing

inside the DHT ring, and assume the sender/receiver can find a path

to RHs using existing methods. In Figure 2 we assume the nearRH
is Charlie. Alice requests Charlie to find paths from himself to all

the other RHs in the DHT ring, i.e., Denise and Daniela. Charlie has

to find paths such that the amount, amt to be sent by Alice is less

than or equal to the maximum amount, max𝑖,𝑘 that each RH 𝑖 on a

given path is willing to route to the next RH 𝑘 in the path. Charlie

finds the paths in two phases. In Phase 1, Charlie finds paths from

himself to all the RHs that are a part of his finger table and that

can route the amount, amt specified by Alice and adds these RHs

to a stack P maintained locally by him. In Phase 2, Charlie finds

paths from himself to the RHs that are not part of his finger table
but can still route the amount, amt specified by Alice. These two

phases are described in detail in Protocol 3. Once the pathfinding

phases are complete, the stack P that contains the list of paths and
signatures is sent to Alice. Alice then verifies the signatures of the

RHs in the stack P on the maximum amount that they can route to

the RHs in their finger tables.

Charlie (26)Denise (1)

Daniela (52)

Alice Joe Charlie
100
��150

��150
200 250

��200

50
��100

Denise

200
��150

50
��100

Bob

150
�
�100

10
0

�
�

15
0

George 200
150

200

200

Daniela
200

150

Figure 2: Alice transmitting 50 coins to Bob via RHs Charlie
and Denise in the DHT ring.

Upon successfully verifying the signatures, Alice sends the endRH
in each path to Bob via a secure out-of-band communication chan-

nel. Bob then picks the endRH that is nearest to him based on hop

count. In Figure 2, the endRH is Denise. Bob notifies Alice about

his choice of the endRH via a secure out-of-band communication

channel. Alice then picks the path containing the RH picked by

Bob as endRH . This finalizes the path along which amt needs to
be routed inside the DHT ring. At any point, if the signatures do

not verify, Alice writes the publicly verifiable signature details to

the blockchain, at which point they can be verified by miners, and

others involved in the system. This ensures that cheating RHs will

be caught, and made to leave the DHT ring. Once Alice and Bob

have agreed on the endRH Denise, Bob chooses a random preimage

𝑋 , and hashes it to produce a digest 𝑌 . The payment mechanism is

initiated using HTLCs. Using HTLCs ensures that no honest party

loses any funds because of malicious behavior by other parties in

the system, which helps us in achieving our goal of balance secu-

rity. HTLCs also ensure that all the link weights of the nodes along

the transaction path go back to the state they were in prior to the

commencement of the transaction if the transaction fails for any

reason. This achieves our goal of atomicity.

5.2 Helper functions
We now describe the helper functions used in RACED’s protocols.
1) ChoosePath (P, endRH)→ P′: This function picks a path for

routing the payment. It takes two parameters, stack P, and the

endRH as inputs, and returns a path P′ that contains the endRH as

the last node in the path. If multiple paths with the same RH as the

endRH are present, the last RH, it returns the shortest path.

2) NH (𝑖, 𝑗)→ ℎ𝑐𝑖, 𝑗 : This function calculates the hop count between

two nodes, 𝑖 and 𝑗 inside the DHT ring.

3)PC.Open (VK𝑖 , VK𝑗 , 𝑙𝑤𝑖, 𝑗 , 𝑙𝑤 𝑗,𝑖)→ {𝑠𝑢𝑐𝑐𝑒𝑠𝑠 , 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒}: This func-

tion opens a new payment channel between two nodes. It takes in

the temporary verification keys of the nodes involved in opening the

channel, denoted by VK𝑖 and VK𝑗 , and the amounts being deposited

on the links as input parameters. The nodes interested in opening

a payment channel create a transaction tuple that contains the VK
of the nodes and the amounts they individually intend to deposit

in the channel. This tuple is signed by both nodes with their tem-

porary signing keys, SK𝑖 and SK𝑗 , and is posted to the blockchain.

The two nodes involved in the opening of the payment channel

sign a single transaction tuple, making it a 2-2 multisig transaction.

For representational clarity, we have abstracted the description of

blockchain writes. Upon a successful opening of a payment channel

6

RACED: Routing in PAyment Channel NEtworks Using Distributed Hash Tables ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

between the nodes, this function returns a 𝑠𝑢𝑐𝑐𝑐𝑒𝑠𝑠 .

4) HTLC.Pay (vk𝑖 , vk𝑗 , txid, amt)→ {𝑠𝑢𝑐𝑐𝑒𝑠𝑠 , 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒}: This func-

tion completes the payment between two nodes once the preimage

used to create the digest is revealed by one node to another. It takes

the long-term verification key of the payer, vk𝑖 , the long-term veri-

fication key of the payee, vk𝑗 , the unique transaction id txid, and
the amt being transacted as inputs. Once the payee has revealed

the preimage using which the digest was produced, this function

checks if the preimage being revealed is correct. If yes, the payer up-

dates the link weights between them accordingly. Upon a successful

release of the correct preimage by the payee and the updating of

the link weights by the payer, it returns 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 . Else it returns a

𝑓 𝑎𝑖𝑙𝑢𝑟𝑒 .

5) FT.Lookup (𝑖 , 𝑗)→ 𝑙 : This function performs the lookup opera-

tion for a node nearest to a destination node based on node identifier.

It takes the node identifier of the source denoted by 𝑖 and the node

identifier of the destination denoted by 𝑗 as the inputs, and returns

the node 𝑙 who has the largest node identifier and is less than or

equal to 𝑗 from the finger table of 𝑖 .

6) FT.Retrieve (𝑖)→ B𝑖 : This function retrieves the entries of a

node’s finger table. This function takes node identifier 𝑖 of the node

in the DHT ring as an input and returns a stack containing the

node identifiers of the entries present in 𝑖’s finger table.

7) RetrieveNext (B)→ 𝑖: This function takes a list as an input argu-

ment and returns the node identifier of the element that the head

of the list points to.

8) RetrieveNeighbors (vk𝑖)→ I𝑖 : This function is used to retrieve

the immediate neighbors of a node. It takes the long-term verifica-

tion key of a node 𝑖 , vk𝑖 , as an input and outputs a list, I𝑖 containing
the verification keys of the immediate neighbors of the node 𝑖 .

9) Succ.Lookup (𝑖)→ 𝑗 : This function looks up the successor of a

node in the DHT ring. It takes the node identifier of a node denoted

by 𝑖 , and returns its immediate successor which is defined as the

smallest node identifier in the DHT ring that is larger than 𝑖 .

10) FT.Search (𝑖 , 𝑗)→ {𝑠𝑢𝑐𝑐𝑒𝑠𝑠 , 𝑓 𝑎𝑖𝑙𝑢𝑟𝑒}: This function searches for

the presence of a node in another node’s finger table. It takes in the

node identifier of the node calling this function 𝑖 and the node iden-

tifier of the node being searched 𝑗 as inputs, and returns 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 if

𝑗 is present in the finger table of 𝑖 .

6 PROTOCOLS
RACED consists of seven protocols:Key Setup (Protocol 6),DHT Setup
(Protocol 1), DHT Processing (Protocol 2), Find Path (Protocol 3),

Path Validation (Protocol 4),Node Joining And Node Leaving (Pro-
tocol 5), Routing Payment (Protocol 7).
The protocol Key Setup handles the generation of long-term and

pseudonymous identities for all the nodes in the PCN. These keys

are used to sign and verify messages in the subsequent protocols

of RACED. The steps of this protocol are self-explanatory. Due to
space constraints, we give the protocol and its full description in

Appendix C.

DHT Setup, Protocol 1: This protocol handles the DHT ring setup

and the computation of signatures on the maximum amount each

RH can route to the RHs in its finger table. The DHT ring setup

facilitates the joining of nodes as RHs and the signatures created

on the maximum amount from this protocol are used by the sender

while selecting a suitable path to route the amt to the receiver. Each
node 𝑖 in the PCN that volunteers to be an RH hashes its IP address,

𝑖𝑝𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑖 with a collision-resistant and consistent hash function.

The resulting digest of the hash becomes the node identifier of the

RH. Each RH 𝑖 locally maintains two stacks B𝑖 and J𝑖 , and a list

L𝑖 . RH 𝑖 will then compute the list of RHs that are a part of its

finger table and adds them to the stack B𝑖 , which contains repeated

entries. The unique entries from B𝑖 are added to the stack J𝑖 . RH 𝑖

creates signatures on the max amount that it can route to the RHs

in the stack J𝑖 . The computation of the maximum amount and the

corresponding signatures is done to hide the actual channel capac-

ities between the nodes in the DHT, which helps us in achieving

our goal of link privacy. These signatures are created by 𝑖 and the

RHs in its finger table using their long-term signing keys and are

added to the list L𝑖 . In addition, two timestamps, 𝑡𝑐 , which is the

timestamp at which the signature was created, and 𝑡𝑣 , which is the

timestamp until which the signature is valid, are added to L𝑖 . This
protocol can be run in parallel by all the RHs in the DHT ring.

DHT Processing, Protocol 2: This protocol handles the creation of

Protocol 1: DHT Setup

1 All RHs decide on the value of 𝛿 ←$R+ and a hash function

𝐻 : {0, 1}𝜆 → {0, 1}𝑚
2 for i = 1;i ≤ |RH|;i++ do
3 node 𝑖 that joins the DHT ring hashes its 𝑖𝑝𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑖 and

creates a digest 𝑌𝑖 : 𝐻 (𝑖𝑝𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑖)→ 𝑌𝑖
4 node identifier of 𝑖 = 𝑌𝑖

5 node 𝑖 will broadcast 𝑌𝑖 and vk𝑖 to all the nodes in the

PCN.

6 node 𝑖 maintains B𝑖 = ∅, J𝑖 = ∅ and L𝑖 = ∅
7 ∀ 𝑗 ∈ [1..𝑚] node 𝑖 does B𝑖 .Add(𝑖 + 2

(𝑗−1)
mod 𝑚)

8 node 𝑖 does RemoveDuplicates(B𝑖)→ J𝑖
9 while (J𝑖 .empty = False) do
10 Pop.(J𝑖)→ 𝑘

11 node 𝑘 does Signsk𝑘 (max𝑖,𝑘)→ 𝜎𝑘max𝑖,𝑘
12 node 𝑖 does Signsk𝑖 (max𝑖,𝑘)→ 𝜎𝑖max𝑖,𝑘 and

13 node 𝑖 does L𝑖 .Add(max𝑖,𝑘 , 𝜎
𝑖
max𝑖,𝑘 , 𝜎

𝑘
max𝑖,𝑘 , 𝑡𝑐𝑖,𝑘 ,

𝑡𝑣𝑖,𝑘)

signatures on the new value of maximum amount, max′
𝑖,𝑘
, that

each RH 𝑖 can route to each RH 𝑘 in its finger table once the time

epoch 𝛿 expires, or when the maximum amount, max𝑖,𝑘 that can

be routed from a RH 𝑖 to its finger table entry 𝑘 exceeds the link

weight (balance) that an RH has in the payment channel with its

finger table entries. The signatures created in this protocol will be

used by the sender to check that the liquidity that exists between

RHs is sufficient to route the amt specified by her. The value of 𝛿

is a system parameter that the RHs decide during the DHT Setup
phase. Once the time epoch expires or when the maximum amount,

max𝑖,𝑘 that can be routed between an RH 𝑖 and its finger table

entry 𝑘 exceeds the balance, 𝑙𝑤𝑖,𝑘 that the RH 𝑖 has in the payment

channel between 𝑖 and 𝑘 , each RH 𝑖 (that satisfies either of the two

conditions in lines 3 or 16,) in the DHT ring retrieves the RHs from

its finger table, removes the duplicate entries, and adds the unique

7

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Kartick Kolachala, Mohammed Ababneh, and Roopa Vishwanathan

Protocol 2: DHT Processing

/* All members of RH check this condition */

1 for i=1;i ≤ |RH|;i++ do
2 node 𝑖 does FT.Retrieve(𝑖)→ B𝑖 and

RemoveDuplicates(B𝑖)→ J𝑖
3 while J𝑖 .empty = False do
4 node 𝑖 retrieves (max𝑖,𝑘 , ·, ·, ·, ·) from L𝑖
5 if max𝑖,𝑘 > 𝑙𝑤𝑖,𝑘 then
6 node 𝑖 assigns the maximum amount that can be

routed to node 𝑘 to max′
𝑖,𝑘

and does

Signsk𝑖 (max′
𝑖,𝑘
)→ 𝜎𝑖max′

𝑖,𝑘

7 node 𝑘 does Signsk𝑘 (max′
𝑖,𝑘

)→ 𝜎𝑘max′
𝑖,𝑘

and node

𝑖 does L𝑖 .Delete(max𝑖,𝑘 , 𝜎
𝑖
max𝑖,𝑗 , 𝜎

𝑘
max𝑖,𝑘 , 𝑡𝑐𝑖,𝑘 ,

𝑡𝑣𝑖,𝑘) and L𝑖 .Add(max′
𝑖,𝑘
, 𝜎𝑖max′

𝑖,𝑘

, 𝜎𝑘max′
𝑖,𝑘

, 𝑡𝑐 ′
𝑖,𝑘
,

𝑡𝑣 ′
𝑖,𝑘
)

8 if (𝑐𝑢𝑟𝑟𝑡𝑖𝑚𝑒 mod 𝛿 = 0) then
9 for i=1;i ≤ |RH|;i++ do
10 node 𝑖 does FT.Retrieve(𝑖)→ B𝑖 and

RemoveDuplicates(B𝑖)→ J𝑖
11 while (J𝑖 .empty = False) do
12 node 𝑖 does Pop.J𝑖 → 𝑘

13 node 𝑖 retrieves (max𝑖,𝑘 , ·, ·, ·, ·) from L𝑖
14 node 𝑖 assigns the maximum amount that can be

routed to node 𝑘 for the current time epoch to

max′
𝑖,𝑘

15 if (max𝑖,𝑘 == max′
𝑖,𝑘
) then

16 𝑡𝑣 ′
𝑖,𝑘

= 𝑡𝑣𝑖,𝑘+ 𝛿

17 Update (max𝑖,𝑘 , ·, ·, ·, 𝑡𝑣𝑖,𝑘) with (max𝑖,𝑘 , ·, ·,
·, 𝑡𝑣 ′

𝑖,𝑘
) in L𝑖

18 else
19 node 𝑖 does Signsk𝑖 (max′

𝑖,𝑘
)→ 𝜎𝑖max′

𝑖,𝑘

20 node 𝑘 does Signsk𝑘 (max′
𝑖,𝑘
)→ 𝜎𝑘max′

𝑖,𝑘

21 node 𝑖 does L𝑖 .Delete(max𝑖,𝑘 , 𝜎
𝑖
max𝑖,𝑘 ,

𝜎𝑘max𝑖,𝑘 , 𝑡𝑐𝑖,𝑘 , 𝑡𝑣𝑖,𝑘) and L𝑖 .Add(max′
𝑖,𝑘
,

𝜎𝑖max′
𝑖,𝑘

, 𝜎𝑘max′
𝑖,𝑘

, 𝑡𝑐 ′
𝑖,𝑘
, 𝑡𝑣 ′

𝑖,𝑘
)

22 return L𝑖
23 else
24 do nothing

ones to the stack J𝑖 . Each RH 𝑖 will compute the signatures on

max′
𝑖,𝑘

for each RH present in its finger table. These signatures are

computed by the RHs using their long-term signing keys. After the

computation of signatures, the signatures attesting to the max in
L𝑖 from the previous time epoch are replaced with the new ones. In

addition, the previous time stamps 𝑡𝑐 and 𝑡𝑣 are replaced with the

fresh ones in the list L𝑘 . If for any reason, the max𝑖,𝑘 between a

RH 𝑖 and its finger table entry 𝑘 has not changed from the previous

time epoch, only the time stamp of the signature validity, 𝑡𝑣 will be

incremented by 𝛿 and updated in the list L𝑖 . This protocol can be

run by each RH in parallel.

Find Path, Protocol 3: This protocol finds paths from the nearRH
to all the other RHs in the DHT ring that can route the amt spec-
ified by the sender. Initially, the sender, Alice, creates a random

transaction id, txid, contacts the nearRH and sends the txid, the
amt that she intends to route, her signature, 𝜎amt, and her tempo-

rary verification key VKAlice through a path-based transaction to

nearRH . The vkreceiver (in this case Bob), txid, amt are added to a

list K by Alice. Alice can be involved in several transactions with

several receivers. The list K helps Alice maintain a record of all the

transactions in which she is the sender. The path from the sender
to the nearRH can be calculated using the constructions described

in [35, 42, 51]; we do not describe this process in this paper. The

nearRH locally maintains two stacks P and W. Upon successful

verification of the signature of Alice on the amt, the txid, amt is
sent by nearRH to all the RHs in its finger table. For each entry,

in its finger table, the nearRH checks if amt is less than the max
that the nearRH can route to that RH in BnearRH (stack containing

nearRH ’s finger table entries). For each such entry, the nearRH ran-

domly samples a path identifier, denoted by pathid and adds the

pathid, the node identifier of nearRH , node identifier of the RHs

in its finger table, the corresponding max, the signatures of the

nearRH and the RH on the max, the time stamps of signature cre-

ation and signature validity and the tuple is pushed on to the stack

P. In this manner, nearRH finds paths from to all RHs in its finger

table. nearRH now finds paths from itself to the RHs in the stack

W. The nearRH pops the first RH inW, denoted by p, and selects

the RH closest to p based on its node identifier and assigns it to i.
The nearRH checks if the liquidity between nearRH and i is suitable
to route the amt specified by Alice and sends a tuple consisting

of the txid, FindpathReq message and the node identifier of p to i.
This transfers the control flow from nearRH to i. i then checks for

the presence of p in its finger table. If present, i constructs a tuple
Qi = (i, p, maxi,p, 𝜎 imaxi,p , 𝜎

p
maxi,p , 𝑡𝑐i,p, 𝑡𝑣i,p) and sends this tuple to

nearRH along with FindpathResp response message. If the RH p is

not present in the finger table of i, i looks up the closest RH to p
in its finger table based on node identifier. This RH is denoted by

k. i checks if the liquidity between i and k is sufficient to route the

amt specified by Alice, if yes, k is sent to nearRH . The nearRH then

assigns the node identifier of k to i. This process is repeated until

a suitable path to p is found. If a path to p is found, the nearRH
samples a path identifier, pathid, at random. The txid, pathid and

all the tuplesQi, for each RH i generated until this point are pushed
on to the stack P. Phase 2 is repeated until the stackW becomes

empty, upon which nearRH sends P to Alice. The nearRH can turn

malicious at any point in any of these phases and try to manipu-

late the contents of any tuple returned by the RHs. However, the

malicious behavior of nearRH will be caught when Alice verifies

the amounts and signatures in Protocol 4.

Path Validation, Protocol 4: Path Validation is the fifth protocol in

RACED. Alice calls this protocol once she receives the stack P con-
taining tuples of paths from the nearRH to all the RHs in the DHT

ring. In this protocol, Alice verifies the signatures of the RHs con-

tained in P on themax that can be routed between each pair of RHs

that are immediate neighbors in the DHT ring. Initially, Alice pops

8

RACED: Routing in PAyment Channel NEtworks Using Distributed Hash Tables ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

Protocol 3: Find Path

1 Alice does 𝑘 ←$ {0, 1}𝜆 , 𝐻 (𝑘) → txid and sends (txid, amt,
𝜎amt, VKAlice) to nearRH , initializes a list K = ∅, creates a
tuple (vkreceiver, txid, amt) and adds it to K

2 nearRH initializes stacks P,W = ∅ and does if
(VerifyVK𝐴𝑙𝑖𝑐𝑒

(amt, 𝜎amt)→ 0) then
3 return ⊥
4 else
5 FT.Retrieve(nearRH)→ BnearRH
6 ∀ RH i ∈ BnearRH , nearRH sends (txid, amt, 𝜎amt,

VKAlice) to each node 𝑖 and ∀ 𝑗 ∈ RH and 𝑗 ∉ BnearRH
doesW.Push(𝑗)

7 while (BnearRH .empty = False) do
8 each node 𝑖 ∈ BnearRH does if (VerifyVK𝐴𝑙𝑖𝑐𝑒

(amt,
𝜎amt)→ 0) then

9 return ⊥
10 else
11 Pop.(BnearRH)→ i
12 if (amt ≤ maxnearRH ,i) then
13 nearRH picks pathid ←$ {0, 1}𝜆 and does

P.Push(txid, pathid, nearRH , i, maxnearRH ,i,
𝜎 imaxnearRH ,i , 𝜎

nearRH
maxnearRH ,i , 𝑡𝑐nearRH ,i, 𝑡𝑣nearRH ,i,

VKAlice)
14 while (W.empty = False) do
15 nearRH checks if (FindPathResp, k, txid) has been

received then
16 nearRH does i = k, sends (txid, FindPathReq, p)

to i
17 else
18 nearRH does Pop.(W)→ p,

FT.Lookup(nearRH ,p)→ i
19 nearRH checks if (amt ≤ maxnearRH ,i) then
20 nearRH sends (txid, FindpathReq, p) to i

/* Node i runs steps 21-25 */

21 if (NH(i,p == 1)) then
22 if (amt ≤ maxi,p) then
23 i retrieves (maxi,p, 𝜎 imaxi,p , 𝜎

p
maxi,p , 𝑡𝑐i,p and

𝑡𝑣i,p) from L𝑖 and constructs a tuple Qi = (i,
p, maxi,p, 𝜎maxii,p

, 𝜎maxpi,p
, 𝑡𝑐i,p, 𝑡𝑣i,p) and

sends the tuple (txid, FindpathResp, Qi) to
nearRH . nearRH samples pathid ←$

{0, 1}𝜆 and does P.Push(txid, pathid, Qi)
24 else
25 i construct a tuple (txid, FindpathResp, i, p,

⊥) sends it to nearRH
26 else
27 i does FT.Lookup(Bi)→ k, sends (txid, amt,

VKAlice) to k if (amt ≤ maxi,k) then
28 i constructs a tuple Qi = (i, k, maxi,k, 𝜎 imaxi,k ,

𝜎kmaxi,k , 𝑡𝑐i,k, 𝑡𝑣i,k,VKAlice) and sends (txid,
FindpathResp, k, Qi) to nearRH

29 nearRH sends P to Alice

Protocol 4: Path Validation
1 Alice maintains a listW𝐴𝑙𝑖𝑐𝑒 = ∅ and receives P from the

nearRH
2 while (P.empty = False) do
3 Alice does Pop.(P)→ txid
4 Alice does if Pop.(P)→ pathid then
5 Alice records a message (New Path) and does

W.Add(pathid)
6 else
7 Alice maintains a list K𝐴𝑙𝑖𝑐𝑒 = ∅
8 Alice does Pop.(P)→ Q𝑗 = (𝑗 , 𝑗 + 1, max𝑗, 𝑗+1,

𝜎
𝑗
max𝑗,𝑗+1 , 𝜎

𝑗+1
max𝑗,𝑗+1 , 𝑡𝑐 𝑗, 𝑗+1, 𝑡𝑣 𝑗, 𝑗+1,VKAlice)

9 if (amt ≤ max𝑗, 𝑗+1) then
10 if (currtime < 𝑡𝑣 𝑗, 𝑗+1) then
11 if (Verify𝑣𝑘 𝑗

(max𝑗, 𝑗+1, 𝜎
𝑗
max𝑗,𝑗+1)→ 1) then

12 if Verify𝑣𝑘 𝑗+1 (max𝑗, 𝑗+1, 𝜎
𝑗+1
max𝑗,𝑗+1)→ 1

then
13 add 𝑗, 𝑗 + 1 to K𝐴𝑙𝑖𝑐𝑒
14 else
15 BC.Write(𝑗, 𝑗 +

1,max𝑗, 𝑗+1, 𝜎max𝑗+1
𝑗,𝑗+1

,VKAlice)

16 else
17 BC.Write(𝑗 +

1, 𝑗,max𝑗, 𝑗+1, 𝜎max𝑗
𝑗,𝑗+1

,VKAlice)

18 else
19 do nothing

20 else
21 BC.Write(𝑗, 𝑗 + 1, amt,max𝑗, 𝑗+1,VKAlice)
22 for i=1; i≤ |W|𝐴𝑙𝑖𝑐𝑒 ; i++ do
23 if W𝑖 =W𝑖+1 then

24 BC.Write(vknearRH , vk𝐴𝑙𝑖𝑐𝑒 ,W𝑖 ,W𝑖+1)

the txid and the pathid from the stack P. This stack now contains

the tuples Q𝑖 , where 𝑖 ∈ [1..(|RH| − 1)]. Alice adds the pathid in

each tuple to a listW that she locally maintains. Alice retrieves each

tuple and initially verifies if the amount that she intends to route is

less than the maximum amount that can be routed between the RHs

in the tuple. If this verification fails, Alice writes the max, the long-
term verification key of the routing helpers involved, and the amt
she intends to route to the blockchain. Upon successful verification,

Alice checks if the time stamp of signature validity, 𝑡𝑣 , is less than

that of the current system time, currtime. Upon successful verifica-

tion, the signatures on the maximum amount created by the RHs

are verified. If the signature verification does not pass, Alice posts

node identifiers of the malicious routing helpers involved, the amt
she intends to route, the max that can be transacted between the

RHs and the signature of the malicious RH to the blockchain. The

nature of punitive actions taken against malicious parties in RACED
may vary across PCNs, and across implementations of RACED, e.g.,
banning malicious parties temporarily or permanently, reporting

them to law enforcement, etc. Describing them is beyond the scope

of this paper.

9

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Kartick Kolachala, Mohammed Ababneh, and Roopa Vishwanathan

Protocol 5: Node Leaving and Node Joining the DHT

/* Node leaving */

1 Let L be the leaving node and L does FT.Retrieve(L)→ BL
2 if (BL.empty = False) then
3 L does FT.Delete(BL)
4 else

/* The lines 7-20 only run at the expiration

of epoch 𝛿 */

5 for i=1;i≤ |RH|;i++ do
6 if (L ∈ B𝑖) then
7 each node 𝑖 does Succ.Lookup(L)→ S
8 if (FT.Search(S, 𝑖)→ 𝑠𝑢𝑐𝑐𝑒𝑠𝑠) then
9 do nothing

10 else

11 if (PC.Open(vkS, vk𝑖 ,
12 𝑙𝑤vkS,vk𝑖 , 𝑙𝑤vk𝑖 ,vkS)→ 𝑠𝑢𝑐𝑐𝑒𝑠𝑠) then

13 channel is established

14 else
15 do nothing

/* New node joining */

16 Let the joining node be J and J does 𝐻 (𝑖𝑝𝑎𝑑𝑑𝑟𝑒𝑠𝑠J) → J,
FT.Compute(J)→BJ and J does RemoveDuplicates(BJ)→
JJ and J does

17 while (JJ.empty = False) do
18 Pop(JJ)→ 𝑖

19 if (PC.Open(vkJ, vk𝑖 , 𝑙𝑤vkJ,vk𝑖 , 𝑙𝑤vk𝑖 ,vkJ)→ 𝑠𝑢𝑐𝑐𝑒𝑠𝑠)
then

20 channel is established

Node Leaving and Node Joining the DHT, Protocol 5: This proto-
col handles the joining of a node in the PCN as a RH and also

handles the leaving of an existing RH from the DHT ring. First, we

give a description of the process of an existing RH leaving the DHT

ring and follow it up with a description of a node in the PCN joining

as RH. We denote the RH leaving the DHT ring by L. Initially, L
calls the PC.Close function to close all the payment channels with

the RHs in its finger table. L maintains local storage that stores

the long-term verification keys of its neighbors. These keys are

retrieved from this storage during the closing of payment channels;

for brevity, we have abstracted these details in the protocol. Once

all the payment channels have been closed, the RHs in whose finger

table L was a member finds L’s successor, S. S performs a search

operation to find the RH in whose finger table L was a member, but

S is not a member. S then establishes payment channels with all

such RHs. Upon successful establishment of the payment channels,

the process of an existing RH leaving the DHT ring is completed.

The second part of this protocol handles the joining of a new node

as a RH in the DHT ring. The node that joins the DHT ring is de-

noted by J. It initially finds its successor based on its node identifier

in the DHT ring, denoted by currsucc. Using the node identifier of
currsucc, J computes the RHs in its finger table and adds them to

the stack JJ. J opens payment channels with all the RHs in JJ. This
completes the process of a new node joining as a RH in the DHT.

The protocol Routing Payment, Protocol 7 handles the routing of
payment between Alice and Bob using HTLCs [31]. The steps for

this protocol are self explanatory. Due to space constraints, we give

the protocol and its full description in Appendix C.

7 EXPERIMENTAL EVALUATION
In this section, we explain our dataset collection, experimental

setup and the results of our evaluation.

7.1 Dataset and Simulation Setup
In RACED, we use the transaction data from Ripple for our experi-

mental evaluation. Transaction data about the most popular PCN,

the Lightning Network, in particular, the data about the number

and the amount of transactions is not publicly available. Due to this,

and the fact that Lightning and Ripple are the only PCNs in use

currently, we use transaction data from Ripple for our experiments.

RACED, however, can be deployed on Lightning Network without

any modification to the underlying structure of Lightning Network.

The only overhead that RACED causes when deployed on Lightning

Network and Ripple is the opening of payment channels in Light-

ning Network (called trustlines in Ripple [49]) by the RHs with the

entries in their finger tables and the creation and verification of

pseudonymous identities for every node in the PCN.

Table 3: Number of cryptographic operations performed/TX.
Legend: LM: landmark, 𝑑: size of the hash digest used in
the DHT, 𝑇 : number of cryptographic operations performed
outside the DHT.

Operations

Protocols

RACED Blanc SW

Signing 1 +𝑇 13 8|LM| + 1
Verification |RH| +𝑇 12 7 + |LM|

Hash 3 +𝑇 7 0

Encryption 𝑇 7 0

Decryption 𝑇 6 0

FT.Lookup 𝑂 (log𝑑) 0 0

FT.Compute log𝑑 0 0

For the experiments, we collected transaction data from the

Ripple network from 01-01-2021 to 12-31-2021 [44]. We chose to

collect Ripple data due to the fact that Ripple’s XRP token, has the

sixth largest capitalization for a cryptocurrency and Ripple’s market

cap is the largest among all payment channel networks [46]. We

used the Ripple API [45] to collect all the “Payment” transactions

that were recorded on the Ripple ledger during the aforementioned

time period. We only consider the “Payment” transactions since

they are path-based transactions that involve several intermediate

nodes between the sender and receiver. These transactions were
recorded in several different currencies. Direct transactions between

a sender and receiver pair which do not involve intermediaries

were excluded from our collected data. We collected a total of

15,634,656 path-based transactions. We pre-processed the collected

data to remove two types of anomalies that we have noticed: invalid

currencies, and incomplete hash digests of transactions. Once the

transaction data was collected and pruned, we created a directed

10

RACED: Routing in PAyment Channel NEtworks Using Distributed Hash Tables ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

graph using the Ripple APIs [49] for everymonth from January 2021

to December 2021. We removed the edges with negative and zero

link weights and converted all the link weights to USD. This gave

us a graph of 225,264 nodes and 1,717,347 edges which was used in

our experiments. All our experiments were run on a single machine

equipped with AMD
TM

EPYC processor (64 bit architecture) with

16 cores and 512 GB of RAM and a clock speed of 3.2 GHz. The

code for all the routing algorithms was written in Python 3.8 and

the NetworkX library [41] was used for simulations.

7.2 Evaluation And Results
We implement and experimentally compare RACED with several

other comparable routing algorithms, specifically with SilentWhis-

pers [35], SpeedyMurmurs [51] and Blanc [42] and show our results

in Table 4. For all the experimental settings, we set the RHs for

RACED and Blanc [42], and the number of landmarks for Silen-

tWhispers [35] and SpeedyMurmurs [51] to eight. These routing

helpers/landmarks were picked as the nodes with the highest out-

degree in the graph. In our experiments, we constructed the graph

for each month in 2021 and routed the transactions accordingly.

By doing so, we capture the growth of the Ripple network over

the year through our graph. Our experiments thus simulate the

network’s evolving, dynamic nature. The graphs for each month

constructed from the Ripple data were disjoint. Hence we extracted

the largest strongly connected component for each month’s graph

and routed the transactions (involving the USD currency) by se-

lecting the sender-receiver pairs and routing helpers from that

component. This is the “RACED-1-SCC” setting in the Table 4. In

order to demonstrate the effectiveness of having the routing helpers

connected via a DHT such as Chord (which is the central idea of

RACED), we extracted the top eight (by node count) strongly con-

nected components for each month. We selected one routing helper

from each strongly connected component (based on the highest

out-degree), connected them via a Chord ring, and all the trans-

actions that were recorded for the USD currency in our dataset

were routed through these RHs. We randomly sampled the sender
and receiver from the dataset to ensure that no sender and receiver
pair is from the same SCC. This is the “RACED-k-SCC” setting in
Table 4.

We measured a total of four metrics for each month: 1) the trans-

action success ratio, which is the ratio of the number of transactions

successful to the total number of transactions routed, 2) the average

path length found, which is the total number of hops between the

sender and receiver, 3) pathfinding time, which is the time taken to

find a path between the sender and the receiver, and 4) routing time,

which is the time taken to route the payment (nodes adjusting link

weights) along the path from the sender to the receiver. We com-

puted the mean of each metric across all twelve months along with

the standard deviation. A total of 52,943 transactions which is the

number of transactions that took place with the currency as USD

during 2021-2022 on the Ripple ledger were routed concurrently.

Message passing between nodes in the course of a routing pro-

tocol in a p2p network such as PCN is an implementation-specific

scenario that depends on the network in which the routing pro-

tocols are deployed. For instance, the Lightning network uses the

in-built IPv4 or IPv6 connection that exists between the nodes in

the PCN for message passing. For more information on this, we

refer the reader to [33]. Ripple uses the Ripple Protocol Consensus

Algorithm (RPCA) [48], which internally handles message pass-

ing. Similar to these, in our simulations for RACED, we use the

NetworkX library, which handles message passing internally.

We usedDijkstra’s shortest path algorithm to simulate the pathfind-

ing outside the DHT in RACED. In RACED, the number of edges |𝐸 |
is significantly lower than |𝑉 |2/log |𝑉 | for the PCN graph 𝐺 (𝑉 , 𝐸),
hence we implemented the priority queue for Dijkstra’s algorithm

using a binary heap [16]. For RACED, the shortest path (in terms

of the hop count) was chosen to route the payment from sender
to nearRH , nearRH to other RHs in the DHT ring, and endRH to

receiver. If multiple paths with the same hop count were present,

the paths with the highest liquidity were chosen. If the hop-count

and the liquidity between paths were the same, then a path was

randomly chosen.

For the simulation of SilentWhispers [35], the number of land-

marks was chosen as eight, and the landmarks were chosen as the

nodes with the highest out-degree. Unlike RACED, SilentWhispers

cannot be applied to disjoint graphs, since it uses BFS (breadth first

search) to find a path between the sender and receiver. Even though
BFS is asymptotically more efficient than Dijkstra’s algorithm, the

routing time and pathfinding times are significantly higher than

RACED, since the overhead contributed by the number of crypto-

graphic operations (signing and verification) is very high. Besides,

unlike RACED, [35] offers no support for concurrent transactions.

In RACED the path length inside the DHT ring is always 3 hops

since we have chosen a total of 8 routing helpers.

SpeedyMurmurs [51] uses an embedding-based routing mech-

anism called VOUTE [50]. VOUTE uses a BFS-based approach to

compute the embedding of all the nodes in the network with re-

spect to their distances from the landmark. Apart from this, the

BFS needs to be run by all the landmarks when a new node joins

or an existing node leaves the network, which gives this protocol

a high stabilization overhead. Hence the pathfinding time for this

is higher than RACED. However, since there are no cryptographic

operations involved, the pathfinding time is lower than that of

SilentWhispers. The routing time for this protocol is also less than

that of SilentWhispers and Blanc since the actual payment routing

does not involve any cryptographic operations. This protocol also

offers no privacy guarantees unlike RACED, where we offer sender,
receiver, and transaction privacy.

The routing protocol Blanc [42], was simulated with the number

of RHs chosen as eight similar to all the other protocols. It needs two

RHs between the sender and the receiver, one picked by the sender

and the other picked by the receiver. The routing/pathfinding time

is very high in this protocol in comparison to the other protocols,

since the pathfinding phase uses broadcasting in three segments:

sender to RH1, RH1 to RH2, RH2 to receiver. Blanc does not ad-
dress the issue of multiple SCCs. The routing time is higher than

RACED, SilentWhispers, and SpeedyMurmurs, because Blanc in-

volves the creation of pair-wise contracts (after the pathfinding

phase) between nodes involved along the path attesting to the

amount that will be transacted. Table 3 represents the number of

cryptographic operations performed by each routing protocol per

every transaction being routed. The transaction processing time for

11

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Kartick Kolachala, Mohammed Ababneh, and Roopa Vishwanathan

Table 4: Performance of different pathfinding and routing protocols. Legend: PL: path length, 1-SCC: one large strongly
connected component in the PCN graph, 𝑘-SCC: 𝑘 strongly connected components. Metrics: success ratio (higher is better),
mean path length (lower is better), pathfinding time (lower is better), routing time (lower is better).

Protocols Success ratio Mean PL (hop-

count)

Pathfinding time

(sec)

Routing time

(millisec)

RACED 1-SCC (sin-

gle graph)

98.85 ± 0.027 6.64 ± 0.287 31.24169 ± 56.144 3.126 ± 0.0254

RACED 𝑘-SCC (sev-

eral disjoint graphs)

98.73 ± 0.148 7.31 ± 0.295 31.24289 ± 56.147 3.165 ± 0.03

SM 1-SCC (single

graph) [51]

98.23 ± 1.64 4.21 ± 0.245 12460.0688 ±
11089.897

3500 ± 0.042

SW 1-SCC (single

graph) [35]

94.63 ± 7.08 7.87 ± 0.387 51707.89 ±
11651.260

225000 ± 630

Blanc 1-SCC (single

graph) [42]

97.92 ± 0.029 10.983 ± 0.754 56344.229 ±
186149.669

391164 ± 725.458

fiat currencies varies from a couple of hours to a couple of days de-

pending on the geographical location of the sender and the receiver

[18, 20, 40]. Our experimental evaluation shows that the average

pathfinding time for RACED is 31 seconds and the average routing

time is 3 milliseconds across 52,000 transactions that were recorded

for an year. This shows the efficiency of RACED in particular.

Setup time analysis: The setup time for Blanc and SilentWhis-

pers is equal (4.565 seconds) since their setup involves only the

creation of the signing and verification keys for the nodes and the

creation and verification of pseudonymous identities. This step can

be parallelized. The setup time for SpeedyMurmurs is the highest,

≈ 5.9 hours since it involves computation of the embedding coordi-

nates of nodes in the PCN. The one-time setup time for RACED is

also significantly high, ≈ 4.12 hours since it involves an additional

setup for the establishment of the DHT ring and the creation and

verification of a node’s long-term and pseudonymous identities.

Tradeoffs: RACED introduces a delay whenever the finger table

of an RH needs to be updated in the event of another RH joining

or leaving the DHT ring. In a DHT, at most 𝑙𝑜𝑔(𝑚) entries in a

node’s finger table can be distinct where𝑚 is the size of the digest

obtained by the hashing the node’s IP address. Updating an existing

RH’s (when another RH leaves the DHT) finger table or a newly

joined RH creating a finger table involves the existing RH or the

newly joined RH opening payment channels with their finger table

entries. In the worst case, a RH night need to open 𝑙𝑜𝑔(𝑚) payment

channels. This introduces a delay of𝛼 , where𝛼 is the time to process

payment channel openings depending on the blockchain on which

RACED will be deployed. The payment channels between RHs and

their finger table entries can be opened in parallel. For BTC this

delay varies from 60 to 90 minutes.

The payment channels opened by the RHs can be used for rout-

ing multiple transactions, which amortizes the delay 𝛼 over several

thousands of transactions. Our evaluations show this delay being

amortized over 52,000 transactions with an average pathfinding

time of thirty one seconds and an average routing time of three

milliseconds. In other words, the setup time of RACED, which is

close to four hours is amortized over routing 52,000 transactions

being routed in three milliseconds. In addition to this, updating

the maximum amount at the end of each time epoch (𝛿) introduces

a delay of 𝛽 , which is the time taken for a RH and a correspond-

ing finger table entry to sign the maximum amount that can be

transacted between them. This makes the total delay introduced by

RACED as (𝛼 + 𝛽).

8 RACED SECURITY ANALYSIS
In this section, we provide a formal analysis of RACED. We define

an ideal functionality FRACED, that consists of six functionalities:
F𝑖𝑛𝑖𝑡 , F𝐷𝐻𝑇 , F𝑎𝑢𝑥 F𝐹𝑖𝑛𝑑𝑝𝑎𝑡ℎ , F𝑃𝑎𝑦𝑚𝑒𝑛𝑡 , and Fℎ𝑡𝑙𝑐 , and two helper
functionalities F𝑠𝑖𝑔 [13], and FPCN [34]. The definition of the ideal

functionalities and the proof of the following theorem is given in

the full version of the paper [25].

Theorem 8.1. Let FRACED be an ideal functionality for RACED.
LetA be a probabilistic polynomial-time (PPT) adversary for RACED,
and let S be an ideal-world PPT simulator for FRACED. RACED UC-
realizes FRACED for any PPT distinguishing environmentZ.

9 CONCLUSION
In this paper, we have designed RACED, a PCN pathfinding and

routing protocol that uses distributed hash tables to route transac-

tions in PCNs. Our protocol does not need the presence of a trusted

third party, is fully decentralized and can route concurrent trans-

actions. RACED also ensures the privacy of sender and receiver,
and atomicity of payments. We have demonstrated the efficiency

of raced RACED by evaluating it on real-world transaction data,

and have proven the security of RACED in the UC framework. The

ideas presented in RACED can potentially be leveraged to decen-

tralized networks in diverse domains such as edge computing and

IoT networks.

ACKNOWLEDGMENTS
This material is based upon work supported by the National Science

Foundation under Award No. 2148358, 1914635, and the Department

of Energy. Any opinions, findings and conclusions or recommenda-

tions expressed in this material are those of the authors and do not

necessarily reflect the views of the National Science Foundation

and the Department of Energy.

12

RACED: Routing in PAyment Channel NEtworks Using Distributed Hash Tables ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

REFERENCES
[1] Moaath Alshaikh and Akram Morie. 2022. Development of Multipath Dynamic

Address Routing Protocol in MANET to Improve Data Transfer in Poor Infras-

tructure Environment. In 2022 International Conference on Computer Science and
Software Engineering (CSASE). 368–373. https://doi.org/10.1109/CSASE51777.

2022.9759630

[2] Abdelrahaman Aly. 2015. Network flow problems with secure multiparty compu-
tation. Ph.D. Dissertation. Catholic University of Louvain, Louvain-la-Neuve,

Belgium.

[3] AbdelrahamanAly, Edouard Cuvelier, SophieMawet, Olivier Pereira, andMathieu

Van Vyve. 2013. Securely solving simple combinatorial graph problems. In

Financial Cryptography and Data Security: 17th International Conference, FC 2013,
Okinawa, Japan, April 1-5, 2013, Revised Selected Papers 17. Springer, 239–257.

[4] Abdelrahaman Aly and Mathieu Van Vyve. 2015. Securely Solving Classical

Network Flow Problems. In Information Security and Cryptology - ICISC 2014,
Jooyoung Lee and Jongsung Kim (Eds.). Springer International Publishing, Cham,

205–221.

[5] Abdelrahaman Aly and Mathieu Van Vyve. 2016. Practically Efficient Secure

Single-Commodity Multi-market Auctions. In Financial Cryptography and Data
Security - 20th International Conference, FC 2016, Christ Church, Barbados, February
22-26, 2016, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 9603),
Jens Grossklags and Bart Preneel (Eds.). Springer, 110–129. https://doi.org/10.

1007/978-3-662-54970-4_7

[6] Hakem Beitollahi and Geert Deconinck. 2008. Comparing Chord, CAN, and

Pastry overlay networks for resistance to DoS attacks. In 2008 Third International
Conference on Risks and Security of Internet and Systems. 261–266. https://doi.

org/10.1109/CRISIS.2008.4757488

[7] Bitkan Explorer [n.d.]. Bitkan Explorer. https://bit.ly/3LTPiYN

[8] Blockchair [n.d.]. Blockchair. https://blockchair.com/ethereum

[9] BTC, ETH tx throughput [n.d.]. BTC, ETH tx throughput. https://academy.

binance.com/en/glossary/transactions-per-second-tps

[10] BTC market cap [n.d.]. BTC market cap. https://coinmarketcap.com/currencies/

bitcoin/

[11] BTC tx throughput [n.d.]. BTC tx throughput. https://www.blockchain.com/

explorer/charts/transactions-per-second

[12] BTCPAY Server [n.d.]. BTCPAY Server. https://bit.ly/3q3oAlU

[13] Ran Canetti. 2004. Universally composable signature, certification, and authenti-

cation. In Proceedings. 17th IEEE Computer Security Foundations Workshop, 2004.
IEEE, 219–233.

[14] Yanjiao Chen, Yuyang Ran, Jingyue Zhou, Jian Zhang, and Xueluan Gong. 2022.

MPCN-RP: A Routing Protocol for Blockchain-Based Multi-Charge Payment

Channel Networks. IEEE Transactions on Network and Service Management 19, 2
(2022), 1229–1242. https://doi.org/10.1109/TNSM.2021.3139019

[15] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2022.

Introduction to algorithms. MIT press.

[16] Sanjoy Dasgupta, Christos H Papadimitriou, and Umesh Virkumar Vazirani. 2008.

Algorithms. McGraw-Hill Higher Education New York.

[17] Lisa Eckey, Sebastian Faust, Kristina Hostáková, and Stefanie Roos. 2020. Splitting

Payments Locally While Routing Interdimensionally. IACR Cryptol. ePrint Arch.
2020 (2020), 555.

[18] Experian. 2023. Zelle limit. https://bit.ly/49lkpr6.

[19] Flare PCN [n.d.]. https://flare.xyz/the-flare-network/

[20] Forbes. 2023. xoom. https://bit.ly/47iPMkt.

[21] A V Goldberg and R E Tarjan. 1986. A New Approach to the Maximum Flow

Problem. In Proceedings of the Eighteenth Annual ACM Symposium on Theory of
Computing (Berkeley, California, USA) (STOC ’86). Association for Computing

Machinery, New York, NY, USA, 136–146. https://doi.org/10.1145/12130.12144

[22] Qianyun Gong, Chengjin Zhou, Le Qi, Jianbin Li, Jianzhong Zhang, and Jing-

dong Xu. 2021. VEIN: High Scalability Routing Algorithm for Blockchain-

based Payment Channel Networks. In 2021 IEEE 20th International Conference on
Trust, Security and Privacy in Computing and Communications (TrustCom). 43–50.
https://doi.org/10.1109/TrustCom53373.2021.00024

[23] Hsiang-Jen Hong, Sang-Yoon Chang, and Xiaobo Zhou. 2022. Auto-Tune: Effi-

cient Autonomous Routing for Payment Channel Networks. In 2022 IEEE 47th
Conference on Local Computer Networks (LCN). 347–350. https://doi.org/10.1109/

LCN53696.2022.9843633

[24] Heba Kadry and Yasser Gadallah. 2021. A Machine Learning-Based Routing

Technique for Off-chain Transactions in Payment Channel Networks. In 2021
IEEE International Conference on Smart Internet of Things (SmartIoT). 66–73. https:
//doi.org/10.1109/SmartIoT52359.2021.00020

[25] Kartick Kolachala, Mohammed Ababneh, and Roopa Vishwanathan. 2023.

RACED: Routing in Payment Channel Networks Using Distributed Hash Ta-

bles. arXiv:2311.17668 [cs.CR]

[26] Lightning Network [n.d.]. Lightning Network. https://lightning.network/

[27] Lightning Network Fees [n.d.]. Lightning Network Fees. https://github.com/

lightning/bolts/blob/master/07-routing-gossip.md#htlc-fees

[28] Lightning Pool [n.d.]. Lightning Pool. https://lightning.engineering/lightning-

pool-whitepaper.pdf

[29] Siyi Lin, Jingjing Zhang, and Weigang Wu. 2020. FSTR: Funds Skewness

Aware Transaction Routing for Payment Channel Networks. In 2020 50th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
464–475. https://doi.org/10.1109/DSN48063.2020.00060

[30] LN minimum payment [n.d.]. LN minimum payment. https://dci.mit.edu/

lightning-network

[31] LNDHTLC [n.d.]. LND HTLC. https://docs.lightning.engineering/the-lightning-

network/multihop-payments/hash-time-lock-contract-htlc

[32] LND keypair [n.d.]. LND keypair. https://github.com/lightning/bolts/blob/

master/08-transport.md

[33] LNDmessage passing [n.d.]. LNDmessage passing. https://github.com/lightning/

bolts/blob/master/07-routing-gossip.md

[34] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Sri-

vatsan Ravi. 2017. Concurrency and privacy with payment-channel networks. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. 455–471.

[35] Giulio Malavolta, Pedro A. Moreno-Sanchez, Aniket Kate, and Matteo Maffei.

2016. SilentWhispers: Enforcing Security and Privacy in Decentralized Credit

Networks. IACR Cryptol. ePrint Arch. 2016 (2016), 1054.
[36] Petar Maymounkov and David Mazieres. 2002. Kademlia: A peer-to-peer infor-

mation system based on the xor metric. In International Workshop on Peer-to-Peer
Systems. Springer, 53–65.

[37] Andrew Miller, Iddo Bentov, Ranjit Kumaresan, and Patrick McCorry. 2017.

Sprites: Payment Channels that Go Faster than Lightning. (02 2017).

[38] Saleh Khalaj Monfared and Saeed Shokrollahi. 2023. DARVAN: A fully decentral-

ized anonymous and reliable routing for VANets. Computer Networks 223 (2023),
109561.

[39] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Decen-
tralized Business Review (2008), 21260.

[40] Nerdwallet. 2023. Xoom limit minimum. https://bit.ly/3QnPOAu.

[41] Networkx library [n.d.]. Networkx library. https://networkx.org/

[42] Gaurav Panwar, Satyajayant Misra, and Roopa Vishwanathan. 2019. Blanc:

Blockchain-based anonymous and decentralized credit networks. In Proceedings
of the Ninth ACM Conference on Data and Application Security and Privacy. 339–
350.

[43] Krzysztof Pietrzak, Iosif Salem, Stefan Schmid, and Michelle Yeo. 2021. LightPIR:

Privacy-Preserving Route Discovery for Payment Channel Networks. In 2021
IFIP Networking Conference (IFIP Networking). 1–9. https://doi.org/10.23919/

IFIPNetworking52078.2021.9472205

[44] Ripple [n.d.]. Ripple. https://ripple.com/

[45] Ripple API [n.d.]. Ripple API. https://data.ripple.com/

[46] Ripple current cap [n.d.]. Ripple current cap. https://www.slickcharts.com/

currency

[47] Ripple market value [n.d.]. Ripple market capitalization. https://bit.ly/3AGVnT0

[48] Ripple message passing [n.d.]. Ripple message passing. https://ripple.com/files/

ripple_consensus_whitepaper.pdf

[49] Ripple trustline API [n.d.]. Ripple trustline API. https://xrpl.org/account_lines.

html

[50] Stefanie Roos, Martin Beck, and Thorsten Strufe. 2016. Voute-virtual overlays

using tree embeddings. arXiv preprint arXiv:1601.06119 (2016).
[51] Stefanie Roos, Pedro Moreno-Sanchez, Aniket Kate, and Ian Goldberg. 2018.

Settling Payments Fast and Private: Efficient Decentralized Routing for Path-

Based Transactions. In 25th Annual Network and Distributed System Security
Symposium, NDSS 2018, San Diego, California, USA, February 18-21, 2018. The
Internet Society.

[52] Antony Rowstron and Peter Druschel. 2001. Pastry: Scalable, decentralized

object location, and routing for large-scale peer-to-peer systems. In IFIP/ACM
International Conference on Distributed Systems Platforms and Open Distributed
Processing. Springer, 329–350.

[53] Vibhaalakshmi Sivaraman, Shaileshh Bojja Venkatakrishnan, Kathy Ruan, Pari-

marjan Negi, Lei Yang, Radhika Mittal, Mohammad Alizadeh, and Giulia Fanti.

2020. High Throughput Cryptocurrency Routing in Payment Channel Networks.

arXiv:1809.05088 [cs.NI]

[54] Mudhakar Srivatsa and Ling Liu. 2009. Mitigating Denial-of-Service Attacks on

the Chord Overlay Network: A Location Hiding Approach. IEEE Transactions on
Parallel and Distributed Systems 20, 4 (2009), 512–527. https://doi.org/10.1109/

TPDS.2008.125

[55] Stellar Network [n.d.]. Stellar Network. https://www.stellar.org/?locale=en

[56] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-

ishnan. 2001. Chord: A Scalable Peer-to-Peer Lookup Service for Internet Ap-

plications. In Proceedings of the 2001 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications (San Diego, California,

USA) (SIGCOMM ’01). Association for Computing Machinery, New York, NY,

USA, 149–160. https://doi.org/10.1145/383059.383071

[57] Lalitha Muthu Subramanian, Roopa Vishwanathan, and Kartick Kolachala. 2020.

Balance transfers and bailouts in credit networks using blockchains. In 2020 IEEE

13

https://doi.org/10.1109/CSASE51777.2022.9759630
https://doi.org/10.1109/CSASE51777.2022.9759630
https://doi.org/10.1007/978-3-662-54970-4_7
https://doi.org/10.1007/978-3-662-54970-4_7
https://doi.org/10.1109/CRISIS.2008.4757488
https://doi.org/10.1109/CRISIS.2008.4757488
https://bit.ly/3LTPiYN
https://blockchair.com/ethereum
https://academy.binance.com/en/glossary/transactions-per-second-tps
https://academy.binance.com/en/glossary/transactions-per-second-tps
https://coinmarketcap.com/currencies/bitcoin/
https://coinmarketcap.com/currencies/bitcoin/
https://www.blockchain.com/explorer/charts/transactions-per-second
https://www.blockchain.com/explorer/charts/transactions-per-second
https://bit.ly/3q3oAlU
https://doi.org/10.1109/TNSM.2021.3139019
https://bit.ly/49lkpr6
https://flare.xyz/the-flare-network/
https://bit.ly/47iPMkt
https://doi.org/10.1145/12130.12144
https://doi.org/10.1109/TrustCom53373.2021.00024
https://doi.org/10.1109/LCN53696.2022.9843633
https://doi.org/10.1109/LCN53696.2022.9843633
https://doi.org/10.1109/SmartIoT52359.2021.00020
https://doi.org/10.1109/SmartIoT52359.2021.00020
https://arxiv.org/abs/2311.17668
https://lightning.network/
https://github.com/lightning/bolts/blob/master/07-routing-gossip.md#htlc-fees
https://github.com/lightning/bolts/blob/master/07-routing-gossip.md#htlc-fees
https://lightning.engineering/lightning-pool-whitepaper.pdf
https://lightning.engineering/lightning-pool-whitepaper.pdf
https://doi.org/10.1109/DSN48063.2020.00060
https://dci.mit.edu/lightning-network
https://dci.mit.edu/lightning-network
https://docs.lightning.engineering/the-lightning-network/multihop-payments/hash-time-lock-contract-htlc
https://docs.lightning.engineering/the-lightning-network/multihop-payments/hash-time-lock-contract-htlc
https://github.com/lightning/bolts/blob/master/08-transport.md
https://github.com/lightning/bolts/blob/master/08-transport.md
https://github.com/lightning/bolts/blob/master/07-routing-gossip.md
https://github.com/lightning/bolts/blob/master/07-routing-gossip.md
https://bit.ly/3QnPOAu
https://networkx.org/
https://doi.org/10.23919/IFIPNetworking52078.2021.9472205
https://doi.org/10.23919/IFIPNetworking52078.2021.9472205
https://ripple.com/
https://data.ripple.com/
https://www.slickcharts.com/currency
https://www.slickcharts.com/currency
https://bit.ly/3AGVnT0
https://ripple.com/files/ripple_consensus_whitepaper.pdf
https://ripple.com/files/ripple_consensus_whitepaper.pdf
https://xrpl.org/account_lines.html
https://xrpl.org/account_lines.html
https://arxiv.org/abs/1809.05088
https://doi.org/10.1109/TPDS.2008.125
https://doi.org/10.1109/TPDS.2008.125
https://www.stellar.org/?locale=en
https://doi.org/10.1145/383059.383071

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Kartick Kolachala, Mohammed Ababneh, and Roopa Vishwanathan

International Conference on Blockchain and Cryptocurrency (ICBC). IEEE, 1–3.
[58] Hieu Tran, Miao Miao, Farokh Bastani, and I-Ling Yen. 2023. Multi-Keyword

Based Information Routing in Peer-to-Peer Networks. In 2023 International Con-
ference on Information Networking (ICOIN). 791–796. https://doi.org/10.1109/

ICOIN56518.2023.10049045

[59] Zied Trifa. 2019. Preventing Sybil attacks in chord and Kadem-

lia protocols. International Journal of Internet Protocol Technol-
ogy 12, 3 (2019), 157–166. https://doi.org/10.1504/IJIPT.2019.101364

arXiv:https://www.inderscienceonline.com/doi/pdf/10.1504/IJIPT.2019.101364

[60] VISA transactions [n.d.]. VISA transactions. https://www.visa.co.uk/dam/VCOM/

download/corporate/media/visanet-technology/aboutvisafactsheet.pdf Ac-

cessed: 2023-02-23.

[61] PengWang, Hong Xu, Xin Jin, and TaoWang. 2019. Flash: Efficient Dynamic Rout-

ing for Offchain Networks (CoNEXT ’19). Association for Computing Machinery,

New York, NY, USA, 370–381. https://doi.org/10.1145/3359989.3365411

[62] Ruozhou Yu, Guoliang Xue, Vishnu Kilari, Dejun Yang, and Jian Tang. 2018.

CoinExpress: A Fast Payment Routing Mechanism in Blockchain-Based Payment

Channel Networks. 1–9. https://doi.org/10.1109/ICCCN.2018.8487351

[63] Saleem Zahid, Kifayat Ullah, Abdul Waheed, Sadia Basar, Mahdi Zareei, and

Rajesh Roshan Biswal. 2022. Fault tolerant DHT-based routing in MANET.

Sensors 22, 11 (2022), 4280.
[64] Xiaoxue Zhang, Shouqian Shi, and Chen Qian. 2021. WebFlow: Scalable and

Decentralized Routing for Payment Channel Networks with High Resource

Utilization. CoRR abs/2109.11665 (2021). arXiv:2109.11665 https://arxiv.org/abs/

2109.11665

[65] Yuhui Zhang andDejun Yang. 2019. RobustPay: Robust Payment Routing Protocol

in Blockchain-based Payment Channel Networks. In 2019 IEEE 27th International
Conference on Network Protocols (ICNP). 1–4. https://doi.org/10.1109/ICNP.2019.

8888094

[66] Yuhui Zhang and Dejun Yang. 2021. RobustPay+: Robust Payment Routing With

Approximation Guarantee in Blockchain-Based Payment Channel Networks.

IEEE/ACM Transactions on Networking 29, 4 (2021), 1676–1686. https://doi.org/

10.1109/TNET.2021.3069725

[67] Ben Y Zhao, Ling Huang, Jeremy Stribling, Sean C Rhea, Anthony D Joseph, and

John D Kubiatowicz. 2004. Tapestry: A resilient global-scale overlay for service

deployment. IEEE Journal on selected areas in communications 22, 1 (2004), 41–53.

A EXTENDED RELATEDWORK
The distributed version of Dijkstra’s shortest path algorithm pre-

sented in [2–4] requires each vertex in the graph to reveal the

vertices it is not connected to, to an “algorithm designer” who runs

the algorithm. Revealing this information eventually reveals the

entire network topology and cannot be leveraged to PCNs because

of privacy violations.

The solution presented in [2–4] for the minimum cost-flow prob-

lem also has the same assumptions as the distributed version of the

Dijkstra’s shortest path algorithm.

The minimum mean cycle problem presented in [2–4] is or-

thogonal to our work since it focuses on finding cycles in graph

which have the least number of edges, whereas RACED focuses

on performing secure routing in PCNs. The idea proposed by Ab-

delrahman et al. in [5] proposes an auction mechanism in which

sellers sell the maximum flow that is transmittable through them

and the bidders bid for these maximum flows. This idea assumes

the total amount of flow transmittable through the network (the

network throughput) to be public and also requires a trusted en-

tity called “control agency” that oversees the auction. This idea

cannot be leveraged to perform secure routing in PCNs. PCNs are

distributed networks where having a central root of trust is not

possible. Revealing the complete throughput of the network for

PCNs is a violation of privacy.

DHTs were developed initially to facilitate file-sharing among

a set of cooperating peers [36, 52, 56, 67]. DHTs are also being ex-

plored for solving routing challenges in MANETs (Mobile Ad-hoc

Networks), VANETs (Vehicular Ad-hoc Networks), and for data

sharing across IoT (Internet Of Things) devices [1, 38, 58, 63]. How-

ever, in the case of PCNs, nodes (peers) do not share data/files but

send and receive money. Peer-to-peer routing protocols that use

DHT do not take part in any payment channel opening/closing, do

not interact with a blockchain, and do not route payments among

each other. Finally, in DHTs it suffices if a node is able to locate

another node in the network for peer-to-peer communication. How-

ever in PCNs, in addition to finding efficient paths between nodes,

the paths should also have enough liquidity to route the amount

specified by the sender.

B OVERVIEW OF CHORD
Chord [56] is a scalable, peer-to-peer, distributed lookup protocol

that locates a node that stores a particular data item in p2p networks.

It uses a consistent hashing mechanism that enables the lookup to

be completed in time that is logarithmic in the number of nodes

present in the DHT ring. The nodes in Chord are placed in the form

of a circle called the identifier circle. Each node hashes its IP address

to produce an𝑚 bit digest that acts as its node identifier, denoted by

the numbers next to each node in Figure 3. Each node in the Chord

ring in Figure 3 is responsible for storing a key (represented as a

digest) that points to a certain fragment of data. This key, k is the
digest obtained by hashing the identifier of the key with the same

hash function that was used to create the node identifiers. Each key

kwill be assigned to the node whose identifier is equal to or follows
the identifier of k in the identifier circle. Each node in the Chord ring
maintains a look-up table called finger table that contains at most𝑚

entries with 𝑙𝑜𝑔(𝑚) being distinct. Each node also maintains a table

containing its first 𝑙𝑜𝑔(𝑛) successors, called the successor table. The
first entry in a node’s finger table is the node’s immediate successor

in the identifier circle. Consider Figure 3, where seven nodes are a

part of a Chord ring. The finger table entries of a node identified

by 𝑖 are computed thus: (𝑖 + 2
(𝑖−1)

mod 𝑚). If we set𝑚 = 6, the

finger table entries of node Charlie are: (26 + 20 mod 2
6
), (26 + 21

mod 2
6
), (26 + 22 mod 2

6
), (26 + 23 mod 2

6
), (26 + 24 mod 2

6
),

(26 + 25 mod 2
6
) which gives us the set of identifiers {27, 28, 30,

34, 38, 61}, which map to nodes [Amit, Amit, Amit, Amit, Jill and

Garcia]. In case the identifier is not assigned to any node in the

Chord ring (27 in this example), the corresponding finger table

entry would be the next node in the ring whose identifier is greater

than 27, in this case, Amit. In Chord, when a node receives a request

to locate a key k that is not in its possession, it forwards the request

to the closest predecessor of k in its finger table. For example, if

Denise wants to resolve a query to locate node Jill, Denise needs to

locate the node that precedes Jill in the Chord ring, which is Amit.

Now from Denise’s finger table shown in Figure 3, the node closest

to Amit (based on node identifiers) in Alice’s finger table, which

contains [Rajiv, Rajiv, Rajiv, Rajiv, Rajiv, Amit] is Amit himself (Amit

is in the finge table of Denise), and Jill is the first node in the finger

table of Amit which contains [Jill, Daniela, Garcia, Denise]. Hence

the distance between Denise and Amit is greater than the distance

between Amit and Jill, so Amit is closer to Jill than Denise. Hence

Denise passes the request of locating Jill, to Amit. Since the finger

table of Amit contains [Jill, Daniela, Garcia, Denise], Jill reaches

Amit in one hop. In this manner, the number of steps is halved

every time a node locates another node in the identifier circle. This

14

https://doi.org/10.1109/ICOIN56518.2023.10049045
https://doi.org/10.1109/ICOIN56518.2023.10049045
https://doi.org/10.1504/IJIPT.2019.101364
https://arxiv.org/abs/https://www.inderscienceonline.com/doi/pdf/10.1504/IJIPT.2019.101364
https://www.visa.co.uk/dam/VCOM/download/corporate/media/visanet-technology/aboutvisafactsheet.pdf
https://www.visa.co.uk/dam/VCOM/download/corporate/media/visanet-technology/aboutvisafactsheet.pdf
https://doi.org/10.1145/3359989.3365411
https://doi.org/10.1109/ICCCN.2018.8487351
https://arxiv.org/abs/2109.11665
https://arxiv.org/abs/2109.11665
https://arxiv.org/abs/2109.11665
https://doi.org/10.1109/ICNP.2019.8888094
https://doi.org/10.1109/ICNP.2019.8888094
https://doi.org/10.1109/TNET.2021.3069725
https://doi.org/10.1109/TNET.2021.3069725

RACED: Routing in PAyment Channel NEtworks Using Distributed Hash Tables ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore

Rajiv (19) [Charlie, Amit, Jill]

Denise (1) [Rajiv, Amit]

[Denise, Rajiv, Amit] Garcia (59)

[Garcia, Denise, Rajiv] Daniela (52)

[Daniela, Garcia, Denise] Jill (48)

[Jill, Daniela, Garcia, Denise] Amit (39)

[Amit, Jill] Charlie (26)

Figure 3: An example Chord ring with 7 routing helpers. The values in parenthesis adjacent to the node represents the node
identifier. The values in the square brackets [...] represent finger table entries. In each finger table, we only show unique entries.

reduces the lookup time to 𝑙𝑜𝑔(𝑛), where 𝑛 is the number of nodes

in the Chord ring.

C PROTOCOLS

Protocol 6: Key Setup

1 for 𝑖 = 1; 𝑖 ≤ 𝑛; 𝑖 + + do
2 node 𝑖 does KeyGen(1𝜆)→ sk𝑖 , vk𝑖

/* creating temporary identities */

3 node 𝑖 does KeyGen(1𝜆)→ SK𝑖 ,VK𝑖
4 node 𝑖 does Signsk𝑖 (VK𝑖)→ 𝜎VK𝑖

5 node 𝑖 calls RetrieveNeighbors(vk𝑖)→ I𝑖
6 node 𝑖 sends vk𝑖 to all the nodes in I𝑖
7 for j=1;j≤ |I𝑖 |;j++ do
8 if Verifyvk𝑖 (VK𝑖 , 𝜎VK𝑖

)→ 0 then
9 𝑗 returns ⊥

10 else
11 PC.Open(VKi, VK𝑗 , 𝑙𝑤i, 𝑗 , 𝑙𝑤 𝑗,i)

Key Setup, Protocol 6: This protocol handles the generation of long-
term and temporary identities for all the nodes in the PCN. These

keys are used to sign and verify messages in the subsequent proto-

cols of RACED. Initially, all the nodes create their temporary and

long-term signing and verification keypairs, denoted by (SK, VK)
and (sk, vk) respectively using the KeyGen function. All the nodes

in the PCN send their long-term verification key to their immedi-

ate neighbors. Nodes that are immediate neighbors of each other

exchange payments in the PCN and hence they need to know each

other’s real identities. The temporary verification key of each node

is signed using the long-term signing key to produce a signature.

This signature ties the long-term identity of a node to its tempo-

rary identity. This signature is then verified by all the immediate

neighbors of a node using the node’s long-term verification key. If

the signature verifies, the two nodes open a payment channel. The

creation of temporary identities is done to hide the real identity of

a node in the PCN from its non-neighboring nodes. This helps us

achieve our goal of sender/receiver privacy.
Routing Payment, Protocol 7: This protocol facilitates the routing
of payment between Alice and Bob. Initially, Alice retrieves the

endRH from each path tuple sent to her in the stack P by the nearRH

Protocol 7: Routing Payment

1 Alice maintains a list T = ∅
2 for i =1;i ≤ |P|;i++ do
3 Alice performs T.Add(endRH𝑖)

4 Alice sends T to Bob out-of-band and Bob picks and sends

endRH𝐵𝑜𝑏 = min(hcendRH𝑖 ,𝐵𝑜𝑏) ∀ 𝑖 ∈ T
5 Alice calls ChoosePath(P, endRH𝐵𝑜𝑏)→ P′

6 Bob does 𝑋 ←$ {0, 1}𝜆 , 𝐻 (𝑋) → 𝑌 and sends 𝑌 to Alice

7 for each pair of consecutive nodes 𝑖, 𝑗 along the path of txid
from Alice to Bob do

8 Alice retrieves the txid for the transaction to be sent to

Bob from the tuple K = (·, txid, ·)
9 previous = 𝑖 , next = 𝑗

10 previous sends (inPath, 𝑌 , txid) to next and
11 previous establishes HTLC with next and previous =

next and next = previous +1
12 for every pair of consecutive nodes along the path of txid

from Bob to Alice do
13 if previous reveals 𝑋 to next then
14 if HTLC.Pay(vkprevious, vknext, txid, amt)→

𝑠𝑢𝑐𝑐𝑒𝑠𝑠 then
15 previous = next and next = previous -1
16 else
17 return ⊥
18 else
19 return ⊥

at the end of Protocol 3. The node identifier of the endRH is the last

value in each tuple present in P. These endRHs are added to the list

T that Alice maintains locally. Alice sends this list to Bob using a

secure out-of-band communication channel. Bob picks one endRH
that is closest to him based on the minimum hop count between him

and the endRH . Bob notifies Alice regarding his choice of endRH
using the same channel. Alice chooses the shortest path that con-

tains the RH picked by Bob as the endRH using the ChoosePath
function. This function returns the path, P′. Bob samples a random

pre-image 𝑋 , hashes it to produce a digest 𝑌 , and sends 𝑌 to Alice.

For each consecutive node along the path from Alice to Bob, every

node sends the tuple (inPath, 𝑌 , txid) to its immediate neighbor.

15

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore Kartick Kolachala, Mohammed Ababneh, and Roopa Vishwanathan

Upon receiving this tuple, every node along the path establishes an

HTLC with its immediate neighbor. Every pair along the path from

Bob to Alice reveals the secret used for the HTLC. Upon successful

revealing of this secret from every node to its immediate neighbor

along the path from Bob to Alice, the payment process is completed.

Using HTLCs ensures that no honest party loses any funds because

of malicious behavior by other parties in the system, which helps

us in achieving our goal of balance security. HTLCs also ensure

that all the link weights of the nodes along the transaction path go

back to the state they were in prior to the commencement of the

transaction if the transaction fails for any reason. This achieves our

goal of atomicity.

16

	Abstract
	1 Introduction
	2 Related Work
	3 System Model
	3.1 Parties
	3.2 Setup and Terminology

	4 Adversary Model
	5 Construction
	5.1 Technical Overview
	5.2 Helper functions

	6 Protocols
	7 Experimental Evaluation
	7.1 Dataset and Simulation Setup
	7.2 Evaluation And Results

	8 RACED Security Analysis
	9 Conclusion
	Acknowledgments
	References
	A Extended Related Work
	B Overview of Chord
	C Protocols

