
PEPPER: Privacy-prEserving, auditable, and fair Payment based
resource discovery at the PERvasive edge
Emrah Sariboz

emrah@nmsu.com

New Mexico State University

Las Cruces, NM, USA

Reza Tourani

reza.tourani@slu.edu

Saint Louis University

St. Louis, MO, USA

Roopa Vishwanathan

roopav@nmsu.com

New Mexico State University

Las Cruces, NM, USA

Satyajayant Misra

misra@nmsu.com

New Mexico State University

Las Cruces, NM, USA

ABSTRACT
Pervasive Edge Computing (PEC), a recent addition to the edge com-

puting paradigm, leverages the computing resources of end-user

devices to execute computation tasks in close proximity to users.

One of the primary challenges in the PEC environment is determin-

ing the appropriate servers for offloading computation tasks based

on factors, such as computation latency, response quality, device

reliability, and cost of service. Computation outsourcing in the PEC

ecosystem requires additional security and privacy considerations.

Finally, mechanisms need to be in place to guarantee fair payment

for the executed service(s).

We present 𝑃𝐸𝑃𝑃𝐸𝑅, a novel, privacy-preserving, and decentral-

ized framework that addresses aforementioned challenges by uti-

lizing blockchain technology and trusted execution environments

(TEE). 𝑃𝐸𝑃𝑃𝐸𝑅 improves the performance of PEC by allocating

resources among end-users efficiently and securely. It also provides

the underpinnings for building a financial ecosystem at the perva-

sive edge. To evaluate the effectiveness of 𝑃𝐸𝑃𝑃𝐸𝑅, we developed

and deployed a proof of concept implementation on the Ethereum

blockchain, utilizing Intel SGX as the TEE technology. We propose

a simple but highly effective remote attestation method that is

particularly beneficial to PEC compared to the standard remote

attestation method used today. Our extensive comparison experi-

ment shows that 𝑃𝐸𝑃𝑃𝐸𝑅 is 1.23× to 2.15× faster than the current

standard remote attestation procedure. In addition, we formally

prove the security of our system using the universal composability

(UC) framework.

CCS CONCEPTS
• Security andprivacy→Distributed systems security;Privacy-
preserving protocols; Trusted computing.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ASIA CCS ’24, July 1–5, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0482-6/24/07.

https://doi.org/10.1145/3634737.3637679

KEYWORDS
Auditable resource discovery, Ethereum, Privacy-preserving auc-

tion, Edge Computing, Trusted Execution Environment.

ACM Reference Format:
Emrah Sariboz, Reza Tourani, Roopa Vishwanathan, and Satyajayant Misra.

2024. PEPPER: Privacy-prEserving, auditable, and fair Payment based re-

source discovery at the PERvasive edge . In ACM Asia Conference on Com-
puter and Communications Security (ASIA CCS ’24), July 1–5, 2024, Singapore,
Singapore. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/

3634737.3637679

1 INTRODUCTION
As technology continues to advance and develop, the number of end

user devices, such as smartphones and tablets, is increasing. Cisco

predicted that by the end of 2023, the number of devices connected

to the internet will be three times the world population [10]. The

increase in the number of devices has enabled a wide range of ap-

plications. Some emerging applications, such as metaverse [28] and

industrial internet of things [32], have demanding computational

needs while demanding low application latency. Cloud computing

offers a solution by allowing end users to offload the execution of

these applications to meet their needs.

However, uploading tasks or retrieving the computing results

for time-sensitive or privacy-sensitive applications underscores the

need for alternative solutions because cloud servers are usually

geographically distant from consumers and could have associated

privacy risks [35]. To address these challenges with cloud comput-

ing, new distributed computing paradigms such as edge computing

and variants, such as fog computing and multi-access edge com-

puting have emerged [36]. The promise of edge computing is to

bring powerful computing devices closer to the end-user region to

improve the response time of users’ needs. Application vendors can

host their services for the user in the vicinity, reducing the overall

latency and the cost of data transfer to the server.

The Pervasive Edge Computing (PEC) paradigm [16, 37, 38] takes

this idea one step further by creating an ecosystem where a variety

of devices at the edge ranging from laptops and tablets to smart-

phones, which have sufficient computation and storage power can

be put to use to provide services on behalf of the cloud service

provider. This will help the cloud provider offer better availability

of services with relatively lower latency. Another benefit of PEC is

enabling computing paradigms that harness the pervasiveness of

https://doi.org/10.1145/3634737.3637679
https://doi.org/10.1145/3634737.3637679
https://doi.org/10.1145/3634737.3637679

edge devices. Consequently, PEC helps offer users a wider range of

server options to outsource their computation compared to tradi-

tional edge computing. Naturally, the question arises, how to find
an appropriate end-device (i.e., PEC server) to which a user’s compu-
tation can be offloaded in the most cost-effective, secure, and private
manner within a dynamic and distributed PEC setting? To the best

of our knowledge, existing literature falls short in addressing the

question at hand, which underscores the need for this study. This

paper proposes a framework to address this question.

Motivation and Challenges: Creating a usable framework that

locates end devices to offload computation for the PEC ecosystem

requires proper incentives. The goal is to persuade end users to

join the computing pool and meet the needs of other users. We

can achieve this by offering money or digital assets (tokens) in

exchange for the service. The framework must also establish a se-

cure and trustworthy environment, ensuring that end users can

confidently participate without concerns regarding losses, privacy,

and security implications. In addition to providing incentives and a

trustworthy environment, the framework must also be fair on two

key aspects. Firstly, each participating server at the edge should

have an equal opportunity to execute offloaded computations–the

fairness can be proportional to capabilities. Secondly, it is crucial to

create a system to establish correct distribution of payment to the

party that executes the computation without any parties getting

shortchanged. This setup provides a transparent and unbiased op-

portunity for every available device at the edge to perform service

and get remunerated for it. Enhancing fairness fosters trust and

participation among the PEC servers, which ultimately enhances

the framework’s success.

To design our framework and to study how it will operate in the

PEC setting, we assume the use of an auction in the PEC for choos-

ing the specific server to perform a requested user’s computing.

Particularly, we assume the use of a reverse auction, where there

are several sellers (servers), each offering the same service at a po-

tentially unique price, and one buyer (end-user requesting service)

using the price to choose the least expensive server. Auction (in the

rest of the paper auction refers to reverse auction) as the means of

identifying the appropriate edge server to use makes sense as the

set of edge servers essentially represent a marketplace for a client

to choose from. Moreover, an unbiased auction guarantees that the

chosen edge server is chosen based on the characteristics needed

for the computation and will provide the most cost-effective opera-

tion among the corresponding usable servers set. In 𝑃𝐸𝑃𝑃𝐸𝑅, our

approach involves orchestrating an auction where all PEC servers

offer their services to users at competitive prices (we use price to

define cost, any other cost metric can be readily used). Each PEC

server strives to minimize the cost of executing the outsourced

client computation in question.

Considering its inherent data provenance, record immutability,

and support of smart contracts, we find the Ethereum blockchain

suitable for our design. Hence, we implemented the auction as a

smart contract on the Ethereum blockchain, to achieve our goals.

Our approach guarantees the integrity of the auction process, al-

lowing anyone to publicly verify its fairness while preventing any

party, including the auctioneer, from manipulating the process to

their advantage.

Another important challenge is that the framework must protect

the privacy of the participants by hiding their bid details. The

bid amount is considered private information since it represents

the cost assessment of the servers for the outsourced application.

The bid amount can be used to infer the computational strategy

and process that a given PEC server uses to devise its bidding

price for computations. Malicious PEC servers participating in the

next round of auction may use this information to gain an unfair

advantage in the auction. Hence, for fairness, it is imperative that

the bid amounts of PEC servers are hidden from each other using a

sealed-bid approach.

In 𝑃𝐸𝑃𝑃𝐸𝑅, only the winning bid amount is made public, and all

the losing bid amounts are kept secret, even from the auctioneer.

We note that by disclosing the winning bid’s details on the smart

contract, 𝑃𝐸𝑃𝑃𝐸𝑅 assures that the bidder who won the auction

placed the corresponding bid, thereby eliminating any suspicions

of biased decision-making. We acknowledge that revealing the

winning bid from a previous round might provide the bidders with

data points to predict future bids. However, it’s important to note

that the cost of service execution heavily depends on the specific

nature of the service and the data size.

Bids are formulated per computation and can vary widely, de-

pending on the characteristics of the service and input size (e.g.,

sorting an array vs. a complex machine learning application like

video annotation) as well as the computation demand. Hence, the

winning bid from a previous round does not necessarily provide a

definitive advantage in future biddings. Also, given that all servers

in the network are privy to the information on the winning bid,

there is no unfair advantage for a chosen set of servers. We use the

Trusted Execution Environment (TEE), particularly, Intel Software

Guard Extension (SGX) [18] to meet these requirements. The TEE

promises to restrict the execution of computation loaded into the

secure and encrypted area of the processor – called enclaves – from

privileged software, including the operating system. The entities

who want to verify the correctness of the loaded software to enclave

perform what is called remote attestation.

Remote attestation assures that the application loaded into the

enclave is correct and the enclave is up to date. As we detail in Sec-

tion 5, the bidders verify the remote device before revealing bid de-

tails. However, for applications with a high number of participants–

multiple entity auctions being one of them–the time it takes to

complete remote attestation increases proportionally with the num-

ber of participants. To reduce this overhead, we propose a novel

technique that significantly improves remote attestation cost, en-

hances the system’s performance, and improves privacy.

Our novel contributions are as follows:
(i) We propose Privacy-prEserving, auditable, and fair Payment

based resource discovery at PERvasive edge, i.e., 𝑃𝐸𝑃𝑃𝐸𝑅, a frame-

work that enables the selection of the proper end-device for trust-

worthy computation offloading. 𝑃𝐸𝑃𝑃𝐸𝑅 is blockchain and TEE

agnostic, meaning it can be deployed on any blockchain platform

with smart contract support.

(ii) 𝑃𝐸𝑃𝑃𝐸𝑅 utilizes an auction implemented on a smart contract

that ensures the privacy of bidders by revealing only the winning

bid while keeping the bids that are lost in the auction confidential

from all parties, including the auctioneer/client.

(iii) We propose a simple yet highly effective remote attestation

technique that significantly reduces the overall time required to

attest a remote server and its enclave software, which is particularly

crucial in scenarios involving a large number of participants, a

situation commonly prominent in PEC.

(iv)We provide an end-to-end implementation of 𝑃𝐸𝑃𝑃𝐸𝑅, which is

built on top of the Ethereum blockchain and Intel SGX, and evaluate

its effectiveness. We further provide a rigorous security analysis of

𝑃𝐸𝑃𝑃𝐸𝑅 using Universal Composability (UC) framework.

The rest of the paper is organized as follows. In Section 2, we

provide the required background relevant to the problem. In Sec-

tion 3, we discuss the literature review. In Section 4, we detail the

system model, threat model, and our assumptions. Section 5 de-

scribes the protocols that constitute 𝑃𝐸𝑃𝑃𝐸𝑅 and provides details

of the protocols. In Section 6, we extensively analyze the security

of 𝑃𝐸𝑃𝑃𝐸𝑅 using both informal and formal methods. In Section 7,

we provide details of the implementation and experimental results

of 𝑃𝐸𝑃𝑃𝐸𝑅. Finally, we conclude the paper in Section 8.

2 BACKGROUND
In this section, we provide a concise overview of the necessary

background to facilitate a better understanding of our framework.

2.1 Trusted Execution Environment
A trusted execution environment, such as Intel Software Guard

Extensions (SGX), enables one to execute applications inside secure

enclaves on untrusted machines [19]. The enclave secludes the

execution of the application and its data from other privileged

applications, including the operating system. Any remote entity

can verify if an enclave is initialized correctly, is on a state-of-the-

art platform, and runs the correct software by performing remote

attestation. Verifying the correctness of such information is critical

and essential before exposing any sensitive data. Intel SGX remote

attestation comes in two flavors:

Enhanced Privacy ID (EPID): The EPID-based remote attestation

employ an anonymous group signature scheme developed by In-

tel [18]. During remote attestation, the attesting enclave generates

a data structure known as a report. The report encapsulates essential
information such as the hash of the code and data loaded into the

enclave (MRENCLAVE), a hash of the public key of the entity that

signed the enclave (MRSIGNER), user-data field, and other pertinent
details. The generated report is then signed using the EPID key,

creating an EPID signature. The relying party
1
can ensure that the

report is indeed signed by a valid enclave, without needing to know
the exact identity of the enclave, thanks to the anonymity property

using the Intel Attestation Service (IAS).

Data Center Attestation Primitive (DCAP): In DCAP-based

remote attestation, the attesting enclave generates report, which is

then signed by the Provisioning Certification Enclave (PCE) using

Provisioning Certificate Key (PCK) that is unique to each plat-

form [31]. The PCE, located on the same platform as the attest-

ing enclave, acts as a local certificate authority. Unlike the EPID-

based attestation model, there isn’t a requirement connect to Intel’s

1
Intel SGX refers to parties verifying the attestation as relying parties:

https://www.intel.com/content/www/us/en/developer/tools/software-guard-

extensions/attestation-services.html

servers each time to verify the attestation report. The Intel SGX
provisioning certification service (PCS) provides required APIs for

parties to retrieve and cache the necessary information, such as

the Provisioning Certificate Key (PCK) certificate and Certificate

Revocation Lists (CRLs), to validate remote attestation locally. We

employ DCAP-based remote attestation in 𝑃𝐸𝑃𝑃𝐸𝑅.

2.2 Ethereum and Smart Contracts
The blockchain technology enables mutually untrusting parties to

connect and transact without the need for any centralized trusted

party. Ethereum is a widely utilized decentralized blockchain plat-

form that enables the creation and execution of decentralized appli-

cations (dApps) in the form of smart contracts and uses Ether as its

cryptocurrency [40]. Smart contracts are software programswritten

in specialized programming languages, such as Solidity or Vyper,

which get executed on the blockchain whenever pre-encoded con-

ditions are met. Interacting with a smart contract involves creating

a transaction, which is then verified by the network’s validators—

entities that partake in establishing network consensus. These inter-

actions are permanently recorded on an immutable ledger, ensuring

transparency and integrity.

2.3 Cryptographic Preliminaries
Elliptic Curve Integrated Encryption Scheme (ECIES) [1] is a hybrid

encryption scheme that combines the properties of symmetric and

asymmetric cryptography. In our framework, we utilize ECIES to

conceal the bid details of the auction participants and give a formal

definition below.

Definition 1. Elliptic Curve Integrated Encryption Scheme [1]:
An Elliptic Curve Integrated Encryption Scheme (ECIES) is defined
over one probabilistic (KeyGen) and four deterministic polynomial
time algorithms: (KAF,KDF, Encrypt,MAC). Let G be a multiplica-
tive cyclic group of prime order 𝑝 generated by 𝑔1.

• KeyGen(𝑝𝑎𝑟𝑎𝑚𝑠) → (𝑠𝑘, 𝑝𝑘): KeyGen algorithm takes ellip-
tic curve parameters, samples random secret key 𝑠𝑘 ←$ Z+

and computes public key 𝑝𝑘 ← 𝑔𝑠𝑘
1
.

• KAF(𝑠𝑘𝑥 , 𝑝𝑘𝑦) → (𝑠𝑠): Key agreement function (KAF), takes
𝑠𝑘 of executor party and the 𝑝𝑘 of receiver party and produces
shared-secret key 𝑠𝑠 .
• KDF(𝑠𝑠) → (𝑘𝑀𝐴𝐶 , 𝑘𝐸𝑁𝐶): Key derivation function, KDF, al-
gorithms takes 𝑠𝑠 and produces MAC key,𝑘𝑀𝐴𝐶 and symmetric
key, 𝑘𝐸𝑁𝐶 by 𝑘𝑀𝐴𝐶 , 𝑘𝐸𝑁𝐶 ←$ {0, 1}𝜆 .
• Encrypt(𝑘𝐸𝑁𝐶 ,𝑚) → (𝑐): Encryption algorithm, Encrypt,
encrypts the message𝑚 using 𝑘𝐸𝑁𝐶 .
• MAC(𝑘𝑀𝐴𝐶 , 𝑐) → (𝑡𝑎𝑔): Message authentication code func-
tion,MAC, generates 𝑡𝑎𝑔 on 𝑐 using 𝑘𝑀𝐴𝐶 .

3 RELATEDWORK
In this section, we provide a comprehensive review of the existing

literature pertaining to our design. This includes an examination

of research on privacy-preserving auctions and smart contracts,

and incentive-based resource utilization within the context of edge

computing paradigms.

3.1 Privacy-preserving Auction
The transparent nature of smart contracts is both a blessing and a

curse. On the one hand, it can transparently mediate the interaction

between mutually untrusted parties; on the other hand, the lack of

privacy limits the application variety, such as auction. To this end,

privacy-preserving auction frameworks for smart contracts have

been proposed in the literature [4, 9, 13–15, 20–22, 33, 41].

We categorize the existing work in blockchain-based privacy

preserving auction frameworks into two broad categories based on

the underlying technique: zero knowledge-based solutions and TEE-

based solutions. In the first category, the bidders use cryptographic

commitments to conceal their bids and employ zero-knowledge

proofs (ZKPs) to prove the validity of their bid values. These so-

lutions require the bids to be revealed to a smart contract or to

the auctioneer during the winner-election period [4, 9, 13, 14, 20–

22, 33]. However, by revealing bid details, the bidder’s strategy is

compromised. In contrast, our framework does not mandate the

disclosure of bids to any party, except for the winning bid.

In the second category of solutions, the bidders encrypt their bid

values off-chain and utilize TEEs to safeguard the bid privacy of the

participants during the decryption phase [15]. However, the number

of remote-attestation that these works require is proportional to the

number of bidders in the auction, making it impractical for auctions

with a high number of users to adopt due to the large latency. Our

framework decreases the number of remote attestation requests

from one request per bidder to one request per auction, reducing

the communication cost between bidders and enclave and the total

time it takes to perform remote attestation.

3.2 Privacy-preserving Smart Contracts
Another area of research worth noting is the pursuit of improved

confidentiality for smart contracts. This is accomplished by exe-

cuting them within a TEE, which restricts access to the execution

details of the smart contract. Several studies have explored this

approach to address the privacy limitations of smart contract exe-

cution [8, 11, 41]. However, these solutions have their limitations.

Some are specific to a particular blockchain due to the introduction

of their own consensus operation, while others can be prohibitively

expensive. In contrast, our solution is chain-agnostic and does not

incur significant costs, as detailed in Section 7.

3.3 Incentive-based Resource Utilization
One of the primary aims of our work is to incentivize participants

to contribute their resources to meet the needs of others. In this

subsection, we detail the related work in methodologies used in

incentive mechanisms.

Several works have applied a game-theoretic approach to in-

centivize the party to execute outsourced computation in the edge

computing paradigms [6, 25–27, 44]. These works model the interac-

tion of parties as a game and use mathematical theorems to deduce

the parties’ strategies. However, the lack of auditability and the cen-

tralized nature of these works make these approaches undesirable.

On the other hand, our work is auditable due to its blockchain ag-

nostic nature. Researchers have utilized blockchain-based auction

frameworks to incentivize resources of end devices [2, 17, 23, 24, 42].

However, these works do not consider hiding the bidding details,

which is critical to keep the auction strategies of the participants

private. Our work does not require bidders to reveal their bids to

any third party, including the auctioneer.

The closest related work to our framework is [15], where authors

employ a TEE to decrypt the bids that are encrypted off the chain

to achieve a privacy-preserving auction. However, our approach

differs in three important ways: (a) 𝑃𝐸𝑃𝑃𝐸𝑅 does not require the

deployment of contracts every time a new auction is needed. The

same contract is reused, which ultimately reduces the long-term

costs and enables multiple auctioneers to utilize the framework

simultaneously; (b) 𝑃𝐸𝑃𝑃𝐸𝑅 reduces the per-auction number of

remote attestation requests – from one request per bidder to a

single request per auction; and (c) our framework does not require

the auctioneer to be online during the declaration of the winner,

whereas [15] requires the auctioneer to be online to initialize the

transaction that assigns the winner’s address on the smart contract.

By removing the reliance on the auctioneer’s online presence, our

framework avoids potential delays in payment and the conclusion

of the auction.

4 MODELS AND ASSUMPTIONS
In this section, we provide a detailed explanation of the parties

involved in 𝑃𝐸𝑃𝑃𝐸𝑅, along with our threat model and underlying

security assumptions.

4.1 System Model
Pervasive Edge Computing (PEC) enables devices, such as com-

puters, tablets, Internet of Things devices, and mobile devices to

dynamically join and leave pools of computing resources at the

network edge [12, 34]. This approach aims to enhance the available

computational resources at the edge and minimize data transmis-

sion time compared to using the Cloud, especially when meeting

applications’ latency requirements. Furthermore, PEC capitalizes

on the pervasive presence of user-end devices, significantly enhanc-

ing the overall availability of computing services by utilizing these

devices for computational tasks. With this objective in mind, our

system model consists of a resource consumer (RC), PEC servers

who make up the set up bidders (B), a service provider (SP), and a

Manager (M).

An SP is the entity that owns a service(s). In this paper, we

consider services that benefit from execution at the network edge,

such as object detection or video annotation, either to avoid trans-

ferring large volumes of data to the Cloud or minimize the response

latency. Such services may require an input that belongs to resource

consumers or can be provided by the SP. We define RC as a client

of an SP who aims to outsource the execution of the SP’s service
to the more capable servers at the edge, primarily due to the limited

resource of her device. PEC servers are entities that are willing to

execute the outsourced application for RC. Finally, the Manager

M is the party that is responsible for mediating the interactions

between its enclave (E) and the smart contract (𝑆𝐶).

TheM is equipped with a processor that supports a TEE, such

as Intel SGX or ARM TrustZone. In 𝑃𝐸𝑃𝑃𝐸𝑅, to outsource the

execution of her service, RC initiates an auction. The auction is

run byM as the auction manager and allows the PEC servers –

which we call bidders in the rest of the paper – to compete against

Table 1: Notations used in 𝑃𝐸𝑃𝑃𝐸𝑅

Notation Description

E Enclave.

B Set of bidders.

RC Resource consumer.

SP Service provider.

M Manager.

𝑆𝐶 Smart contract.

𝐵𝐶 Blockchain.

𝑖𝑑𝐴 Auction identifier.

𝑎𝑔𝑔𝑛𝑜𝑛𝑐𝑒 Aggregated nonce.

𝐶𝑒𝑟𝑡𝑥 Certificate of entity 𝑥 .

𝑡𝑥𝑥 Transaction of entity 𝑥 .

report Attestation report.

𝑎𝑑𝑑𝑟𝑥 Blockchain address of entity 𝑥 .

each other by submitting their best offers to win the task. We give

our table of notations in Table 1.

4.2 Threat Model
We consider the following threats from the bidders, the manager,

and the resource consumer, each falling into their respective cate-

gories.

Bidders: (a) The bidders may attempt to learn the bid values of

other bidders to adjust theirs accordingly; (b) the bidders may abort

the auction after registering for it or may keep registering to the

auction to perform Distributed Denial of Service (DDoS) attack on

the framework.

Manager(M): (a) The manager may collude with other bidders to

learn and leak the bids to others; (b) the manager may attempt to

declare a different entity as the auction winner rather than the one

reported by the enclave; (c) the manager may attempt to exclude

one or more bids while transmitting them from the smart contract

to the enclave.

Resource Consumers (RC): (a) The resource consumer may cre-

ate an arbitrary auction without a legitimate intention of outsourc-

ing job; (b) the resource consumer may attempt to evade paying

the auction winner.

4.3 Security Assumptions
The service provider SP is presumed honest. Since SP owns the

service, it is in its best interests to ensure correct service execution—

SP’s reputation is at stake. We assume ManagerM to be honest-

but-curious – the manager follows the protocol but attempts to

learn additional information with malicious intent. Conversely, we

consider the resource consumer, denoted asRC, as an economically-

rational malicious entity, actively seeking to obtain and disclose

bid information. Similarly, the bidders are also considered to be po-

tentially malicious entities. We assume the application responsible

for decrypting the bids and finding the winner inside the enclave is

developed by SP and then provided toM and publicly available

for the participants.

We recognize the recent attacks on Intel SGX [3, 43]; while it is

important to deter such attacks and build secure enclaves, it is an

orthogonal to the aim of this paper. We also assume the existence of

a mechanism such as a marketplace, where the resource consumers

RC
BIDDER
MANAGER

.

.

.

Blockchain

Bi

Enclave

Untrusted
Component

RCBidders
1

2

3

4
5

6

8

Manager

7

Bi+1

Bi+2

Bi+3

Figure 1: The interaction of parties throughout the entire
auction process, from the creation of the auction to the dec-
laration of the winner on the smart contract.
and servers can interact directly or via a facilitating authority.While

we do not consider the case where the executing party may return

the incorrect execution result, the modular design of our framework

enables the adoption of verifiable computation techniques, such

as [29, 30], to resolve the issue. Finally, we make the assumption

that the PEC servers have undergone authentication by the SP
before executing the service on behalf of the SP using techniques,

such as [12].

5 PEPPER CONSTRUCTION
In this section, we discuss the protocols that constitute the 𝑃𝐸𝑃𝑃𝐸𝑅

framework. These protocols serve as the foundation for privacy-

preserving PEC server selection to execute outsourced services.

5.1 Design Overview
In a nutshell (refer to Figure 1), the process in 𝑃𝐸𝑃𝑃𝐸𝑅 begins after

the service provider implements and deploys the auction smart

contract that will be used for choosing the designated PEC server.

We note that the service provider’s presence is not needed after

deploying the auction’s smart contract, and the auctions can run

between the resource consumers and bidders independent of the

service provider.

Once the smart contract is deployed, a resource consumer inter-

ested in outsourcing their service defines the start and end time for

auction registration, as well as the auction end time (Step (1)). Bid-

ders who are interested in participating in the auction then register

themselves (Step (2)). During the registration, the bidders engage in

what we call “nonce aggregation”, enabling them to verify enclave

freshness during remote attestation. Once the bidder registration

phase is complete, the Manager (M) retrieves the aggregated nonce

from the Blockchain and initializes its Enclave E (Step (3)).

As part of the enclave’s remote attestation, the enclave generates

an attestation report, report, and makes it available for the bidders

Protocol 1 System Setup

{At Service Provider}
1: (𝑝𝑘, 𝑠𝑘) ← KeyGen(1𝜆).
2: SP implement 𝑆𝐶 and deploy on Blockchain.

{At Bidders}
3: for each 𝑏𝑖 ∈ B do
4: (𝑝𝑘𝑖 , 𝑠𝑘𝑖) ← KeyGen(1𝜆).
5: end for

to verify the freshness of the enclave before sending their encrypted

bids, which represents the interest to perform the outsourced task,

to the smart contract (Step (4)). Upon successful attestation, the

bidders encrypt their bids using the algorithm defined in Defini-

tion 1 and send them to the smart contract 𝑆𝐶 (Step (5)), along

with a deposit for the auction. This step is essential to confirm if

the enclave is legitimate before disclosing sensitive details. Once

the auction period is over, the Manager collects the encrypted bids

and information of bidders and sends them to the enclave along

with deposits (Step (6)). The enclave decrypts the bids to find the

winning bid and the winner’s address, and then reliably sends the

details to the Manager (Step (7)). The Manager creates a transaction

including the signed message from the enclave, which indicates

the winning bid, and submits it to the smart contract (Step (8)).

Finally, the smart contract verifies the integrity and authenticity

of the enclave’s signature on the blockchain and declares the win-

ner’s address. Following this step, participants who did not win the

auction can request refunds of their deposit amounts and exit the

auction.

5.2 PEPPER Detailed Design
In this section, we describe the five protocols that constitute the

𝑃𝐸𝑃𝑃𝐸𝑅 framework in detail. Protocol 1 comprises deploying a

smart contract for the auction and generating key pairs for all the

bidders, B. Protocol 2 deals with auction creation, bidders regis-

tration, and enclave (i.e., E) initialization. Protocol 3 details our

novel remote attestation process. Protocol 4 details the secure bid

submission process. Protocol 5 is used to verify the winner’s details

and announcement on the smart contract.

5.2.1 System Setup (Protocol 1). Initially, SP generates a pub-

lic/private key pair, i.e., (𝑝𝑘, 𝑠𝑘) for the signing transaction that

deploys the smart contract, 𝑆𝐶 . Subsequently, SP implements the

𝑆𝐶 that codifies auction logic on the Blockchain (Lines 1-2). We note

that 𝑆𝐶 is provider-specific, allowing the service provider to adjust

the auction logic as needed for the interactions, such as reverse

auctions, Dutch auctions, etc., as discussed in the introduction due

to the nature of the PEC. Due to nature of PEC where multiple

servers offers the same service at varying prices, we have imple-

mented a reverse auction approach. During the system setup, the

bidders, which are willing to offer their computing resources for

the outsourced service execution, generate their own (𝑝𝑘, 𝑠𝑘) pairs
using KeyGen(1𝜆), where 𝜆 is a security parameter (Line 4). The

encryption process requires these keys in Protocol 4.

5.2.2 Auction Initiation (Protocol 2). In this protocol, the RC cre-

ates an auction by calling 𝑆𝐶.CreateAuction() and sets parameters,

such as the payment for the outsourced job (𝑝𝑎𝑦𝑚𝑒𝑛𝑡), the start and

Protocol 2 Auction Initiation

{At Resource Consumer}
1: 𝑖𝑑𝐴 ← 𝑆𝐶.CreateAuction(𝑝𝑎𝑦𝑚𝑒𝑛𝑡, 𝑟𝑒𝑔𝑇𝑖𝑚𝑒,

𝑟𝑒𝑔𝐸𝑛𝑑𝑇𝑖𝑚𝑒, 𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝐸𝑛𝑑𝑇𝑖𝑚𝑒, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝐷𝑒𝑝𝑜𝑠𝑖𝑡).
{At Bidders}

2: for each 𝑏𝑖 ∈ B do
3: Pick 𝑛𝑜𝑛𝑐𝑒𝑖 ←$ Z+.
4: 𝑆𝐶.RegisterBidder(𝑖𝑑𝐴, 𝑛𝑜𝑛𝑐𝑒𝑖 , 𝑝𝑘𝑖).
5: end for

{At Manager}
6: 𝑎𝑔𝑔𝑛𝑜𝑛𝑐𝑒 ← 𝑆𝐶.GetAggregatedNonce(𝑖𝑑𝐴).
7: Initialize E with 𝑎𝑔𝑔𝑛𝑜𝑛𝑐𝑒 .

{At Smart Contract}
8: function CreateAuction(𝑝𝑎𝑦𝑚𝑒𝑛𝑡, 𝑟𝑒𝑔𝑇𝑖𝑚𝑒, 𝑟𝑒𝑔𝐸𝑛𝑑𝑇𝑖𝑚𝑒 ,

9: 𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝐸𝑛𝑑𝑇𝑖𝑚𝑒, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝐷𝑒𝑝𝑜𝑠𝑖𝑡):

10: 𝑖𝑑𝐴 ← 𝐻 (𝑡𝑖𝑚𝑒.𝑛𝑜𝑤 ()∥𝑎𝑑𝑑𝑟RC).
11: return 𝑖𝑑𝐴 .

12: end function
13: function RegisterBidder(𝑖𝑑𝐴 , 𝑛𝑜𝑛𝑐𝑒𝑖 , 𝑝𝑘𝑖):

14: if (𝑟𝑒𝑔𝑇𝑖𝑚𝑒 <= 𝑡𝑖𝑚𝑒.𝑛𝑜𝑤 () < 𝑟𝑒𝑔𝐸𝑛𝑑𝑇𝑖𝑚𝑒) ∧ 𝑖𝑑𝐴 exists

then
15: Store bidder details.

16: else:
17: return ⊥.
18: end function
19: function GetAggregatedNonce(𝑖𝑑𝐴):

20: if (𝑟𝑒𝑔𝑇𝑖𝑚𝑒 < 𝑡𝑖𝑚𝑒.𝑛𝑜𝑤 () < 𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝐸𝑛𝑑𝑇𝑖𝑚𝑒) ∧ 𝑖𝑑𝐴 exists

∧ !𝑖𝑠𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 then
21: isRequested = True.

22: return 𝑎𝑔𝑔𝑛𝑜𝑛𝑐𝑒 of auction 𝑖𝑑𝐴 .

23: else:
24: return ⊥.
25: end function

end time for auction registration (𝑟𝑒𝑔𝑇𝑖𝑚𝑒 and 𝑟𝑒𝑔𝐸𝑛𝑑𝑇𝑖𝑚𝑒), the

time when the auction ends (𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝐸𝑛𝑑𝑇𝑖𝑚𝑒), and the required de-

posit amount to participate in the auction (𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝐷𝑒𝑝𝑜𝑠𝑖𝑡) (Line

1). The rationale for setting different times on smart contract 𝑆𝐶

is to divide the auction process into two periods: the registration

period and the auction period. The auction period commences

immediately after the 𝑟𝑒𝑔𝐸𝑛𝑑𝑇𝑖𝑚𝑒 and remains valid until the

𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝐸𝑛𝑑𝑇𝑖𝑚𝑒 . During the auction creation, the smart contract

computes the auction identifier 𝑖𝑑𝐴 using the current time on the

blockchain (𝑡𝑖𝑚𝑒.𝑛𝑜𝑤) and the blockchain address of the resource

consumer (𝑎𝑑𝑑𝑟RC).
The 𝑖𝑑𝐴 identifies the auction and bidders use it when registering

for the auction. The smart contract now locks the offered payment

to prevent the resource consumer from reclaiming it before the

end of the auction. Upon creation of the auction, the bidders in-

terested in bidding for the auction randomly sample a nonce. The

bidders will use the nonce values to verify the freshness of the en-

clave (Line 3). Each bidder then registers for the auction by calling

𝑆𝐶.RegisterBidder() that accepts auction identifier (i.e., 𝑖𝑑𝐴), the
sampled nonce (𝑛𝑜𝑛𝑐𝑒𝑖), and the bidder’s public key (i.e., 𝑝𝑘𝑖) (Line
4). The 𝑖𝑑𝐴 uniquely identifies the auction, for which the bidder is

registering.

In the process, 𝑆𝐶 aggregates the nonce values provided by all

participating bidders. 𝑆𝐶 achieves this by summing the individual

nonce values together which forms the foundation of our novel

remote attestation protocol. Aggregating nonce on smart contracts

enables public verification of the total value (𝑎𝑔𝑔𝑛𝑜𝑛𝑐𝑒) and elimi-

nates the trust assumption on any party. Unlike traditional remote

attestation approaches that require each bidder to individually con-

nect with the enclave and provide their nonce values to verify

freshness, our framework employs a single nonce that is aggre-

gated on the smart contract. The 𝑎𝑔𝑔𝑛𝑜𝑛𝑐𝑒 will later be used by

enclave E to generate a report for the remote attestation (Proto-

col 3, Line 2). This approach not only simplifies the process but

also enhances scalability. Instead of generating separate reports

for each participant, our novel remote attestation model generates

a single report for all participants. As a result, the total number
of remote attestations is reduced to one, regardless of the number of
bidders. Finally, the smart contract stores the bidder’s public key

(𝑝𝑘𝑖). The enclave requires the 𝑝𝑘𝑖 values to derive the necessary

keys to decrypt the encrypted bids.

The smart contract first checks if the auction with ID 𝑖𝑑𝐴 exists

and if the registration period is still ongoing. If both conditions

are met, the smart contract will store the bidder’s details. Once

the registration phase for the auction 𝑖𝑑𝐴 is over, the managerM
calls 𝑆𝐶.GetAggregatedNonce() with 𝑖𝑑𝐴 argument to retrieve the

𝑎𝑔𝑔𝑛𝑜𝑛𝑐𝑒 from 𝑆𝐶 to initialize the enclave (Lines 6-7). The smart

contract checks if the auction registration period is over and the

manager already requested the 𝑎𝑔𝑔𝑛𝑜𝑛𝑐𝑒 for the auction 𝑖𝑑𝐴 . The

second check is important to prevent theM from initializing the

enclave multiple times for the same auction. The manager initial-

izes the enclave with 𝑎𝑔𝑔𝑛𝑜𝑛𝑐𝑒 if all the checks hold. During ini-

tialization, the application that determines the winner undergoes

compilation into a format that enables its loading into the enclave.

The bidders can now utilize the loaded application.

5.2.3 Remote Attestation (Protocol 3). AfterM initializes the en-

clave E, the application inside the enclave initially generates public

and private key pair (𝑝𝑘𝐸 , 𝑠𝑘𝐸) (Line 1). The public key, i.e., 𝑝𝑘𝐸 , is
required by bidders to encrypt their bids before submitting them to

the smart contract. The enclave utilizes the private key, i.e., 𝑠𝑘𝐸 , to
derive the shared-secret key during the decryption of the bids.

The bidders before submitting any sensitive details (bids) need

to validate the legitimacy and the freshness of the enclave. To assist

bidders in achieving their goals, the enclave generates an X.509

certificate, denoted as 𝐶𝑒𝑟𝑡𝐸 , and constructs the message 𝑀 as

𝑀 = (𝐶𝑒𝑟𝑡𝐸 ∥𝑎𝑔𝑔𝑛𝑜𝑛𝑐𝑒). Additionally, the enclave generates a report
and incorporates the digest of𝑀 (i.e., ℎ = 𝐻 (𝑀)) into the user-data
field of the report (Lines 2-3). Under the hood, the report is signed by
the Provisioning Certification Enclave (PCE) using the Provisioning

Certificate Key (PCK), a unique key for the hardware. The PCE is an

Intel-provided enclave located on the same platform as the attesting

enclave, which serves as a root of trust for the 𝐶𝑒𝑟𝑡𝐸 .

The E initializes a TLS server using 𝐶𝑒𝑟𝑡𝐸 and makes the 𝑝𝑘𝐸
and signed report available to bidders. We note that the root of

trust of 𝐶𝑒𝑟𝑡𝐸 is the enclave itself [19]. Then, participating bid-

ders retrieve the report, 𝐶𝑒𝑟𝑡𝐸 , and 𝑝𝑘𝐸 from enclave E (Line 4).

The bidders, using the retrieved values, verify the report by calling

Protocol 3 Remote Attestation

{At Enclave}
1: E creates (𝑝𝑘𝐸 , 𝑠𝑘𝐸) ← ECIES.KeyGen(1𝜆).
2: E generates 𝐶𝑒𝑟𝑡𝐸 , sets 𝑀 = (𝐶𝑒𝑟𝑡𝐸 ∥𝑎𝑔𝑔𝑛𝑜𝑛𝑐𝑒) and computes

ℎ = 𝐻 (𝑀).
3: E generates 𝑟𝑒𝑝𝑜𝑟𝑡 ← GenerateReport(ℎ).

{At Bidders}
4: Retrieve 𝑟𝑒𝑝𝑜𝑟𝑡 , 𝑝𝑘𝐸 and 𝐶𝑒𝑟𝑡𝐸 from E.

5: for each 𝑏𝑖 ∈ B do
6: if 𝑡𝑟𝑢𝑒 ← VerifyRemoteReport(𝑟𝑒𝑝𝑜𝑟𝑡) then
7: 𝑎𝑔𝑔𝑛𝑜𝑛𝑐𝑒 ← 𝑆𝐶.GetAggregatedNonce(𝑖𝑑𝐴).
8: ℎ = 𝐻 (𝐶𝑒𝑟𝑡𝐸 ∥𝑎𝑔𝑔𝑛𝑜𝑛𝑐𝑒).
9: if 𝑟𝑒𝑝𝑜𝑟𝑡 .𝑢𝑠𝑒𝑟𝐷𝑎𝑡𝑎 == ℎ then
10: Call Protocol 4.

11: else
12: return ⊥.
13: end if
14: else
15: return ⊥.
16: end if
17: end for

VerifyRemoteReport, which checks if the code loaded into the en-

clave is correct. If it is, the signature on the 𝑟𝑒𝑝𝑜𝑟𝑡 belongs to the

specific enclave and is up to date, verified by checking the Provision-

ing Certification Key (PCK) certificate and Certificate Revocation

Lists (CRLs) (Line 6).

Intel provides necessary APIs to retrieve information from In-

tel Provisioning Certification Service
2
. The PCK and CRLs are

cacheable to further reduce the report validation time for future

interactions. Upon successful verification, each bidder checks the

enclave’s freshness by obtaining the 𝑎𝑔𝑔𝑛𝑜𝑛𝑐𝑒 from 𝑆𝐶 and com-

puting ℎ = 𝐻 (𝐶𝑒𝑟𝑡𝐸 ∥𝑎𝑔𝑔𝑛𝑜𝑛𝑐𝑒). To verify the freshness, bidders

compare the value of the user-data field in the report with ℎ (Line

9). Verifying freshness is crucial in eliminating successful replay at-

tacks, in whichM potentially uses a previously initialized enclave

rather than a new instance [7]. If the verification of enclave fresh-

ness and authenticity holds, the bidders interact with Protocol 4 to

encrypt and submit their bids.

5.2.4 Bid Submission (Protocol 4). Bidders use this protocol to

encrypt their bids and submit them to 𝑆𝐶 . Initially, each registered

bidder generates a shared secret denoted as 𝑠𝑠 using the enclave’s

public key (𝑝𝑘E) and its own private key (𝑠𝑘𝑖). The 𝑠𝑠 key facilitates

the establishment of a shared secret between the bidder and the

enclave without the need for a direct key exchange. Each bidder

further derives 𝑘𝑀𝐴𝐶 and 𝑘𝐸𝑁𝐶 keys from 𝑠𝑠 . Bidders use 𝑘𝐸𝑁𝐶 to

encrypt their bid and use 𝑘𝑀𝐴𝐶 to generate a tag on the encrypted

bid. The enclave will use 𝑡𝑎𝑔 to ensure the integrity and authenticity

of the encrypted bid value.

To submit their bid to the smart contract, each bidder concate-

nates the 𝑏𝑖𝑑 and 𝑡𝑎𝑔 and invokes the 𝑆𝐶.SendBid function, passing
the auction identifier (𝑖𝑑𝐴), encrypted and tagged bid (𝑐𝑏𝑖𝑑), and

deposit amount (𝑑𝑒𝑝𝑜𝑠𝑖𝑡) as arguments (Lines 1–9). The deposit

amount, which is set to the same amount for every participant,

will be locked in 𝑆𝐶 until the auction winner is determined. The

2
https://api.portal.trustedservices.intel.com/provisioning-certification

Protocol 4 Bid Submission

{At Bidders}
1: for each 𝑏𝑖 ∈ B do
2: 𝑠𝑠𝑖 ← ECIES.KAF(𝑠𝑘𝑖 , 𝑝𝑘E).
3: (𝑘𝑀𝐴𝐶 , 𝑘𝐸𝑁𝐶) = ECIES.KDF(𝑠𝑠𝑖).
4: 𝑝𝑏𝑖𝑑𝑖 ←− Z+.
5: 𝑏𝑖𝑑𝑖 ← ECIES.Encrypt(𝑘𝐸𝑁𝐶 , 𝑝𝑏𝑖𝑑𝑖).
6: 𝑡𝑎𝑔𝑖 ← ECIES.MAC(𝑘𝑀𝐴𝐶 , 𝑏𝑖𝑑𝑖).
7: 𝑐𝑏𝑖𝑑𝑖 = (𝑏𝑖𝑑𝑖 ∥𝑡𝑎𝑔𝑖).
8: Call 𝑆𝐶.SendBid(𝑖𝑑𝐴, 𝑐𝑏𝑖𝑑𝑖 , 𝑑𝑒𝑝𝑜𝑠𝑖𝑡).
9: end for

{At Smart Contract}
10: function SendBid(𝑖𝑑𝐴 , 𝑐𝑏𝑖𝑑𝑖 , 𝑑𝑒𝑝𝑜𝑠𝑖𝑡):

11: if (𝑟𝑒𝑔𝐸𝑛𝑑𝑇𝑖𝑚𝑒 < 𝑡𝑖𝑚𝑒.𝑛𝑜𝑤 () < 𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝐸𝑛𝑑𝑇𝑖𝑚𝑒)
12: ∧ 𝑖𝑑𝐴 exists ∧ 𝑑𝑒𝑝𝑜𝑠𝑖𝑡 == 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑𝐷𝑒𝑝𝑜𝑠𝑖𝑡 then
13: Store bidder details on smart contract.

14: else:
15: return ⊥.
16: end function
17: function GetBidDetails(𝑖𝑑𝐴):

18: if (𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝐸𝑛𝑑𝑇𝑖𝑚𝑒 < 𝑡𝑖𝑚𝑒.𝑛𝑜𝑤 ()) then
19: return bids and public keys of bidders.

20: else:
21: return ⊥.
22: end function

deposit aims to prevent malicious bidders from registering multiple

times but not participating in the auction. The smart contract first

verifies that the auction with the ID 𝑖𝑑𝐴 exists, the auction is not

over, and the 𝑑𝑒𝑝𝑜𝑠𝑖𝑡 amount matches the required amount. If all

conditions are met, the bid details are stored by the smart contract.

Once the auction period is completed, the ManagerM retrieves

the encrypted bids and the bidders’ public keys and forwards them

to E through the TLS endpoint in the form of a dictionary (𝐵𝑖𝑑𝑠).

5.2.5 Winner Announcement (Protocol 5). After receiving the bids

and public keys of the bidders, the enclave iterates over each bid

and creates the shared secret 𝑠𝑠 using its private key 𝑠𝑘𝐸 and the

participants’ public keys 𝑝𝑘𝑖 . Using 𝑠𝑠 , the enclave derives two

symmetric keys, denoted as 𝑘𝑀𝐴𝐶 and 𝑘𝐸𝑁𝐶 , by calling ECIES.KDF
(Line 6). To verify the integrity of bids, the E first computes 𝑡𝑎𝑔′ ←
ECIES.MAC(𝑘𝑀𝐴𝐶 , 𝑏𝑖𝑑𝑖) and checks it against the 𝑡𝑎𝑔, which is

included in the ciphertext. If the integrity verification is successful,

then E decrypts the bid using 𝑘𝐸𝑁𝐶 , and finds the minimum bid

amount and the winner’s address (Lines 8–12).

After determining the winning bid and winner’s address, the en-

clave concatenates the winner’s bid amount (𝑚𝑖𝑛𝐵𝑖𝑑), the winner’s

address (𝑎𝑑𝑑𝑟𝑤𝑖𝑛𝑛𝑒𝑟), and the 𝐵𝑖𝑑𝑠 dictionary. Subsequently, it signs

the concatenated data to ensure integrity and provenance (Lines 16-

17). The enclave forwards 𝜎E along with𝑚𝑖𝑛𝐵𝑖𝑑 and 𝑎𝑑𝑑𝑟𝑤𝑖𝑛𝑛𝑒𝑟 to

M, who in turn, verifies the enclave signature, constructs transac-

tion 𝑡𝑥M , and calls SetWinner function on 𝑆𝐶 (Line 18). To prevent

a maliciousM from setting a different winner’s address than the

one determined by E, 𝑆𝐶 needs to ensure that the message is signed

by E rather thanM. In order to achieve this, we need to extract

the signer of the message from the given message and compare the

address with the Manager’s address on the chain.

Protocol 5Winner Announcement

{At Enclave}
1: 𝑚𝑖𝑛𝐵𝑖𝑑 ← 𝑢𝑖𝑛𝑡 .𝑀𝑎𝑥 ().
2: 𝑖𝑛𝑑𝑒𝑥 ← 0.

3: 𝑎𝑑𝑑𝑟𝑤𝑖𝑛𝑛𝑒𝑟 ← 0.

4: for each 𝑏𝑖𝑑𝑖 ∈ 𝐵𝑖𝑑𝑠.𝑖𝑡𝑒𝑚𝑠 () do
5: 𝑠𝑠 ← ECIES.KAF(𝑠𝑘E, 𝑏𝑖𝑑𝑖 .𝑝𝑘𝑖).
6: (𝑘𝑀𝐴𝐶 , 𝑘𝐸𝑁𝐶) ← ECIES.KDF(𝑠𝑠).
7: 𝑡𝑎𝑔′ ← ECIES.MAC(𝑘𝑀𝐴𝐶 , 𝑏𝑖𝑑𝑖).
8: if 𝑡𝑎𝑔′ == 𝑏𝑖𝑑𝑖 .𝑡𝑎𝑔𝑖 then
9: 𝑝𝑏𝑖𝑑𝑖 ← ECIES.Encrypt−1 (𝑘𝐸𝑁𝐶 , 𝑏𝑖𝑑𝑖).
10: if 𝑝𝑏𝑖𝑑𝑖 < 𝑚𝑖𝑛𝐵𝑖𝑑 then
11: 𝑚𝑖𝑛𝐵𝑖𝑑 = 𝑝𝑏𝑖𝑑𝑖 .

12: 𝑎𝑑𝑑𝑟𝑤𝑖𝑛𝑛𝑒𝑟 = 𝑏𝑖𝑑𝑖 .𝑝𝑘𝑖 .

13: end if
14: end if
15: end for
16: ℎ ← 𝐻 (𝑚𝑖𝑛𝐵𝑖𝑑 ∥𝑎𝑑𝑑𝑟𝑤𝑖𝑛𝑛𝑒𝑟 ∥𝐵𝑖𝑑𝑠).
17: 𝜎E ← Sign(ℎ).

{At Manager}
18: M creates 𝑡𝑥M = 𝑆𝐶.SetWinner(𝑖𝑑𝐴, 𝜎E,𝑚𝑖𝑛𝐵𝑖𝑑, 𝑎𝑑𝑑𝑟𝑤𝑖𝑛𝑛𝑒𝑟).

{At Smart Contract}
19: function SetWinner(𝑖𝑑𝐴 , 𝜎E,𝑚𝑖𝑛𝐵𝑖𝑑 , 𝑎𝑑𝑑𝑟𝑤𝑖𝑛𝑛𝑒𝑟):

20: if 𝑎𝑑𝑑𝑟E
?

= ecrecover(𝜎E, 𝐻 (𝑚𝑖𝑛𝐵𝑖𝑑 ∥𝑎𝑑𝑑𝑟𝑤𝑖𝑛𝑛𝑒𝑟 ∥𝐵𝑖𝑑𝑠)) ∧
𝑖𝑑𝐴 then

21: 𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝑊 𝑖𝑛𝑛𝑒𝑟 = 𝑎𝑑𝑑𝑟𝑤𝑖𝑛𝑛𝑒𝑟 .

22: 𝑤𝑖𝑛𝑛𝑒𝑟𝐵𝑖𝑑 =𝑚𝑖𝑛𝐵𝑖𝑑 .

23: else:
24: return ⊥.
25: end function
26: function RefundDeposit(𝑖𝑑𝐴):

27: if 𝑐𝑎𝑙𝑙𝑒𝑟 ≠ 𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝑊 𝑖𝑛𝑛𝑒𝑟 ∧ auction is over ∧ 𝑐𝑎𝑙𝑙𝑒𝑟 ∈ B
then

28: refund 𝑑𝑒𝑝𝑜𝑠𝑖𝑡 .

29: else:
30: return ⊥.
31: end function

In Solidity, the ecrecover opcode is used to extract the address

of the signer from a given signature and a message [39].

The 𝑆𝐶 computes the digest of concatenation of𝑚𝑖𝑛𝐵𝑖𝑑 ,𝑎𝑑𝑑𝑟𝑤𝑖𝑛𝑛𝑒𝑟

and 𝐵𝑖𝑑𝑠 and use ecrecover low-level instruction (i.e., opcode) to
extract the 𝑎𝑑𝑑𝑟 of the signer from the given signature 𝜎 (i.e., 𝜎E)
on message 𝑀 . It is important to note that, during the extraction

of the winner’s address, the 𝑆𝐶 includes 𝐵𝑖𝑑𝑠 in the hash function

to verify whetherM excluded any bids during transmission to E

or modified the original bidder’s list. In the case of malicious activ-

ity from𝑀 , the extracted address would not match the address of

the enclave. If the check holds, the 𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝑊 𝑖𝑛𝑛𝑒𝑟 and𝑤𝑖𝑛𝑛𝑒𝑟𝐵𝑖𝑑

details are now stored on 𝑆𝐶 and are available to everyone. Every

entity, except the winner bidder, can now withdraw their 𝑑𝑒𝑝𝑜𝑠𝑖𝑡

by calling 𝑆𝐶.RefundDeposit() (Line 26).
We note that the enclave’s address, 𝑎𝑑𝑑𝑟E, is stored within 𝑆𝐶 ,

and a specific function is implemented to allow only the service

provider to update this address, especially when there is a need for

a new manager. This functionality is achieved through the use of

modifiers, which enable function-level access control in the smart

contracts. For the withdrawal, the smart contract checks if the

auction is over, if the caller is not the winner, and if the caller is

one of the participants in the auction. If all conditions are met, the

deposit will be refunded to the bidder.

6 SECURITY ANALYSIS
In this section, we present a comprehensive security analysis of

our framework, describing potential attack vectors per our adver-

sary model, and detailing how 𝑃𝐸𝑃𝑃𝐸𝑅 effectively mitigates them.

Furthermore, we establish the security of our framework formally

using the Universal Composability (UC) framework [5], provid-

ing a rigorous validation of its robustness against various security

threats.

6.1 Informal Security Analysis
Malicious Bidder: Following the threat model, the malicious bid-

ders may attempt to learn and leak the bid details of others. How-

ever, in 𝑃𝐸𝑃𝑃𝐸𝑅, the bidders encrypt their bids, which are subse-

quently decrypted within an enclave. Unless bidders collude and

share their bids among themselves, the auction only discloses the

winning bid at the end of the auction. We emphasize that bidders’

primary goal is to secure victory in the auction by offering their

service at a competitive price. Sharing the bid details with other

participants undermines their competitive advantage.

Additionally, malicious bidders may attempt to disrupt the auc-

tion process by either aborting the auction after registering or

continuously registering without actually participating in the auc-

tion. However, the security of the system remains intact as the

registration period is the initial step before the auction period. Con-

sequently, the bidder will incur losses as the transaction to register

requires gas fees.

Malicious Manager: The malicious manager may attempt to se-

lectively exclude a subset of bidders by removing their bids when

transferring them from the smart contract to the enclave, i.e., during
the winner election process. We eliminate this attack by including

all the bids when creating a signature on the digest of the bids

inside the enclave (Protocol 5, Line 16) and also when verifying the

signature of the enclave (Protocol 5, Line 20). We can perform such

verification since the encrypted bids are permanently recorded on

the blockchain during the bid submission process. In the case that

a bid is excluded during transfer, the enclave will not have all the

bids. The signature verification of the enclave will fail, hence the

malicious attempt of the manager will be detected.

Another possible attack from a malicious manager is to change

the winner’s address to another bidder. Our design inherently pre-

vents such an attack as it requires the enclave to digitally sign the

digest of the winner’s address, inside the secure environment, using

the enclave’s private key. By doing so, 𝑃𝐸𝑃𝑃𝐸𝑅 ensures that any

modification of the winner’s address by the manager can be de-

tected. When the enclave’s signature is verified on the blockchain,

any discrepancy, such as a change in the winner’s address, would

result in the failure of signature verification. The verification pro-

cess effectively reveals and thwarts any such malicious attempts

by a manager to modify the auction outcome.

Functionality F
bc

Smart contract deployment: Upon receiving the tuple

(sid, deploy, 𝑆𝐶, 𝑐𝑜𝑑𝑒, 𝑎𝑑𝑑𝑟E) from the service provider SP,
F
bc

will first deploy the smart contract 𝑆𝐶 and then store

the corresponding tuple (𝑆𝐶.𝑎𝑑𝑑𝑟𝑒𝑠𝑠, 𝑐𝑜𝑑𝑒, 𝑎𝑑𝑑𝑟E) in a table

called scTable. F
bc

will then return the tuple to the service

provider SP and S.

Figure 2: Ideal functionality for blockchain

Malicious Resource Consumer: In our framework, we address

the issue of resource consumers attempting to acquire and disclose

bid details of unsuccessful bidders during the bid reveal period.

Although such actions may not be driven by malicious intent, the

leaked information could be exploited by other participants to ad-

just their bids and secure victory in subsequent compute requests.

However, unlike other frameworks, our framework does not re-

veal the bids of the losing participants to any party, including the

resource consumer. The only information we disclose is the win-

ner’s bid and address. By doing so, our framework achieves a fully

privacy-preserving bidding period.

Another potential threat by a malicious resource consumer in-

volves the creation of arbitrary auctions without any genuine inten-

tion to outsource computation, aiming to waste the bidders and the

manager’s resources. When creating an auction, the RC is required

to specify the payment amount (𝑝𝑎𝑦𝑚𝑒𝑛𝑡) willing to offer to the

winning bidder, which remains locked throughout the auction’s

duration. The deposit amount is visible to the bidders and serves

as an incentive for them to participate in the auction. The poten-

tial for the loss of the RC’s deposit on incorrect/arbitrary auction

discourages an economically rational RC (per Section 4.3) from

creating such a fake auction.

6.2 Formal Security Analysis
We analyze the security of our framework in the Universal Com-

posability (UC) framework [5]. The notion of UC security and

indistinguishability is captured by the following two definitions.

Definition 2. (UC-emulation [5]) Let 𝜋 and 𝜙 be probabilistic
polynomial-time (PPT) protocols. We say that 𝜋 UC-emulates 𝜙 if for
any PPT adversaryA there exists a PPT adversaryS such that for any
balanced PPT environmentZ we have EXEC𝜙,S,Z ≈ EXEC𝜋,A,Z .

Definition 3. (UC-realization [5]) Let F be an ideal functionality
and let 𝜋 be a protocol. We say that 𝜋 UC-realizes F if 𝜋 UC-emulates
the ideal protocol for F .

We define an ideal functionality, FPEPPER, which is composed of

two independent ideal functionalities: F
bc
, and Fauction as depicted

in Figures 2-3. Additionally, we utilize the helper functionality

Fsig [5] and give the formal definition in Figure 8.1. We assume

the existence of four tables that store the internal state of FPEPPER:
scTable, aTable, bTable, nTable. These tables are accessible by all

functionalities at any time. Specifically, scTable stores the contract

address code, and enclave details, aTable stores the auction details,

bTable stores the bidder details, and nTable keeps track of the ag-

gregated nonce for the auction. We need to show that a simulator

S can simulate the actions of all honest parties by interacting with

Functionality Fauction
Auction Creation: Upon receiving (sid, createAuction, payment, regTime, regEndTime, auctionEndTime, requiredDeposit) from SP,
Fauction first computes auction identifier idA, records (idA, payment, regTime, regEndTime, auctionEndTime, requiredDeposit) tuple in
aTable and returns it to both SP and S.
Bidder Registration: Upon receiving a request (sid, registerBidder, idA, unonce, pku) from user 𝑢, Fauction first checks if a tuple

(idA, ·, regTime, regEndTime, ·, ·) exists in aTable and retrieves if so. Fauction then checks if the current time is within the registration

period; if so it adds the tuple (idA, pku, “not-used”, “not-winner”) to the bTable and returns to 𝑢 and S. If not, Fauction returns ⊥ to

both 𝑢 and S. Then, Fauction checks if the tuple (idA, aggnonce) exists in the nTable. If it does, Fauction retrieves (idA, aggnonce) and
adds the 𝑢𝑛𝑜𝑛𝑐𝑒 to the aggnonce value and updates the tuple. Otherwise it sets aggnonce = 𝑢𝑛𝑜𝑛𝑐𝑒 and store (𝑖𝑑𝐴, aggnonce) in nTable

and returns to 𝑢 and S.
Bid Submission: Upon receiving a request (sid, bidSubmit, idA, 𝑢𝑏𝑖𝑑,𝑢𝑑𝑒𝑝𝑜𝑠𝑖𝑡) from user 𝑢, Fauction first checks if tuple

(idA, ·, ·, ·, ·, requiredDeposit) exists in aTable; if so the 𝑢𝑑𝑒𝑝𝑜𝑠𝑖𝑡 amount is equal to the requiredDeposit; if so, Fauction updates the

row (idA, ·, “not-used”, ·) in bTable to (idA, ·, 𝑢𝑏𝑖𝑑, ·) and returns to 𝑢 and S. If not, Fauction returns ⊥ to both 𝑢 and S.
SettingWinner: Upon receiving a request (sid, setWinner, idA,𝜎E,𝑚𝑖𝑛𝐵𝑖𝑑 ,𝑎𝑑𝑑𝑟𝑤𝑖𝑛𝑛𝑒𝑟) frommanagerM, Fauction retrieves (·, ·, 𝑎𝑑𝑑𝑟E)
from scTable, constructs tuple (sid, Sign, 𝑢𝑖𝑑 ,𝑚𝑖𝑛𝐵𝑖𝑑 , 𝑎𝑑𝑑𝑟𝑤𝑖𝑛𝑛𝑒𝑟 , 𝑎𝑑𝑑𝑟E) and forwards to Fsig where 𝑢𝑖𝑑 is user id. Upon receiving

(sid, Signature, 𝑢𝑖𝑑 ,𝑚𝑖𝑛𝐵𝑖𝑑 , 𝑎𝑑𝑑𝑟𝑤𝑖𝑛𝑛𝑒𝑟 , 𝑎𝑑𝑑𝑟E, 𝜎
′
E
), Fauction checks if 𝜎E equals to 𝜎′

E
. If so, Fauction updates the row in bTable from

(idA, 𝑝𝑘𝑢 , ·, “not-winner”) to (idA, 𝑝𝑘𝑢 , ·, “winner”) and sends to all users including S.
Auction Aggregated Nonce Request: Upon receiving a request (sid, getAggNonce, idA) from user𝑢, Fauction checks if tuple (idA, ·, ·, ·)
exists in bTable; if so it retrieves (·, ·, 𝑟𝑒𝑔𝐸𝑛𝑑𝑇𝑖𝑚𝑒, 𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝐸𝑛𝑑𝑇𝑖𝑚𝑒, ·) from aTable and checks if the current time is between 𝑟𝑒𝑔𝐸𝑛𝑑𝑇𝑖𝑚𝑒

and 𝑎𝑢𝑐𝑡𝑖𝑜𝑛𝐸𝑛𝑑𝑇𝑖𝑚𝑒 . If so, Fauction retrieves (idA, aggnonce) from nTable and returns (sid, aggnonce) to the user 𝑢 and S.
Auction Bid Detail Request: Upon receiving (sid, getBidDetails, idA, 𝑢𝑖𝑑) from user 𝑢, Fauction checks if tuple (idA, ·, ·, ·) exists in
bTable; if so retrieves (·, ·, 𝑟𝑒𝑔𝐸𝑛𝑑𝑇𝑖𝑚𝑒, ·, ·) from aTable and checks if auction registration period has ended. If so, Fauction then returns

bTable to both user 𝑢 and S.
Initialize Enclave: Upon receiving a request (sid, initEnclave, aggnonce , 𝑢𝑖𝑑) from user 𝑢, Fauction constructs tuple

(aggnonce, “not-used", “not-used", “not-used") and adds to eTable. Fauction returns (sid, initialized, aggnonce) to user 𝑢 and S.
Generate Report: Upon receiving a request (sid, reportGen, ℎ) from user 𝑢, Fauction generate certificate 𝑒𝑐𝑒𝑟𝑡 , attestation report

𝑒𝑟𝑒𝑝𝑜𝑟𝑡 , updates tuple (·, 𝑒𝑐𝑒𝑟𝑡, 𝑒𝑟𝑒𝑝𝑜𝑟𝑡, ℎ) in eTable and returns back to user 𝑢 and S.
Verify Report: Upon receiving a request (sid, reportVer, idA, 𝑟𝑒𝑝𝑜𝑟𝑡) from user 𝑢, Fauction verifies the report. If the report is valid,

Fauction retrieves (idA, aggnonce) from nTable and the tuple (·, 𝑒𝑐𝑒𝑟𝑡, ·, ·) from eTable. Fauction then computes 𝐻 (𝑒𝑐𝑒𝑟𝑡 ∥aggnonce) and
compares it to the 𝑢𝑠𝑒𝑟𝐷𝑎𝑡𝑎 field in the report. If the two values match, Fauction sends (sid, verified) response to both 𝑢 and S.

Figure 3: Ideal functionality for auction

the ideal functionalities. Due to space constraints, we provide the

proof of the following theorem in Appendix 8.2.

Theorem 1. LetFPEPPER be an ideal functionality for 𝑃𝐸𝑃𝑃𝐸𝑅. Let
A be a probabilistic polynomial-time (PPT) adversary for 𝑃𝐸𝑃𝑃𝐸𝑅,
and let S be an ideal-world PPT simulator for FPEPPER. 𝑃𝐸𝑃𝑃𝐸𝑅
UC-realizes FPEPPER for any PPT distinguishing environmentZ.

In order to prove the theoremmentioned above, we need to prove

that no environment (trusted or untrusted) outside the protocol

execution can distinguish between the execution of real-world pro-

tocols in 𝑃𝐸𝑃𝑃𝐸𝑅 and the execution of ideal-world functionalities

in FPEPPER. We use A to denote real-world adversaries and S to

denote ideal-world adversaries. Our goal is to show that S can

simulate the actions of the real-world protocol by interacting with

FPEPPER and can produce the same outputs and messages as in the

real-world protocols.

7 EXPERIMENTAL RESULTS AND ANALYSIS
This section provides a comprehensive overview of the implemen-

tation scope, experimental setup, and evaluation of 𝑃𝐸𝑃𝑃𝐸𝑅.

7.1 Implementation Scope
Our proof of concept implementation of the framework is composed

of four main components: the bidder engine, the manager engine,

the enclave engine, and the client engine. All of these components

were implemented using Go (v.1.17.5). In our enclave engine, we

used EGo
3
(v.1.2.0) framework to implement enclave-related opera-

tions and used the SGX driver (v.2.11.0). To secure communication

between the components, we employed TLS (v.1.2). Additionally,

we used the curve secp256k1 and the ECIES
4
library (v.2.0.4) in our

cryptographic operations.

To conduct our experiments, we utilized Intel SGX as a TEE

platform. We deployed a virtual machine on Microsoft Azure with

the following specifications: Ubuntu 18.04.6 operating system, In-

tel Xeon CPU with 3.70 GHz clock speed and 2 processor, 8 GB

RAM, and 100 GB solid-state drive (SSD) storage to execute SGX

instructions. We refer to this virtual machine as the manager and

dedicated this virtual machine to confidential operations using its

enclave. In addition, we deployed two more virtual machines with

identical specifications to act as Bidders in the same geographical

region. These machines have the following specifications: Ubuntu

3
https://github.com/edgelesssys/ego

4
https://pkg.go.dev/github.com/ecies/go/v2@v2.0.4

Table 2: Gas consumption and corresponding dollar amounts
used in the auction.

Function Gas Consumption USD Equivalent

constructor() 2091834 $8.36

RegisterBidder() 434962 $1.73

RefundDeposit() 130000 $0.52

CreateAuction() 117457 $0.46

SetWinner() 41310 $0.16

18.04.6 LTS operating system, Intel Xeon Platinum processor with

2.60 GHz clock speed and 2 cores, 4 GM RAM, and 30 GB SSD. We

selected Ethereum as the underlying blockchain platform. We im-

plemented and deployed our auction smart contract using Solidity

(v.0.8.0) on the Sepolia testnet
5
.

For comprehensive performance analysis of 𝑃𝐸𝑃𝑃𝐸𝑅’s remote

attestation, we further implemented Trustee’s remote attestation

mechanism as described in [15] within the EGo framework (same

as 𝑃𝐸𝑃𝑃𝐸𝑅), utilizing Intel’s Data Center Attestation Primitives

(DCAP) model. We will present our comparison results in Figure 5.

7.2 Results and Analysis
In Table 2, we present the total gas consumption of functions used

in the auction smart contract. The gas consumption analysis details

the total cost of creating an auction and participating in it. For

instance, deploying smart contract, i.e., constructor function, on
the Sepolia testnet required a total of 2091834 units of gas, which is

equivalent to $8.36 at an average rate of 2.5 GWei (i.e., one-billionth
of one Ether) per unit of gas and a cost of $1600 per Ether. It is

important to note that the deployment cost is a one-time expense.

The contract can be utilized by both the bidders and the auction-

eers multiple times and even simultaneously, thereby amortizing

the cost of running auctions. In contrast, the transaction that sets

the winner (i.e., the SetWinner() function) only costs $0.52 due to

the low gas consumption of the ecrecover opcode. We emphasize

that GetAggregatedNonce() and GetBidDetails() functions do not
cost any Ether as they do not modify any state; hence, excluded

from Table 2. Moreover, the deployment gas amount remains con-

stant irrespective of the number of registered bidders or auctioneers.

Finally, 𝑃𝐸𝑃𝑃𝐸𝑅 drastically reduces gas consumption by delegating

the auction winner logic to an enclave, which runs off the chain.

In contrast, Trustee [15] requires the redeployment of the auc-

tion contract for every individual auction event, incurring a cost of

$5.4 at the current Ether rate. These characteristics make 𝑃𝐸𝑃𝑃𝐸𝑅 a

more cost-effective and scalable solution in comparison. For exam-

ple, in 1000 auctions, the total cost for 𝑃𝐸𝑃𝑃𝐸𝑅 amounts to $8.36,

while Trustee incurs a total cost of $5.4 × 1000.

We benchmark enclave-related operations, including signing the

executable (depicted in turquoise; bottom), generating the report

(depicted in green; middle), and building the enclave (depicted in

orange; top), as depicted in Figure 4. We averaged the numbers over

100 iterations to provide a robust analysis. The X-axis in Figure 4

shows the number of bidders, and the Y-axis shows the time it

takes to complete the operations in milliseconds. Enclave building

is a process of converting the application logic implemented in a

5
https://sepolia.etherscan.io/

1000 5000 10000 15000 20000
Number of bidders

0

500

1000

1500

2000

2500

En
d-

to
-e

nd
 W

in
ne

r S
el

ec
tio

n
La

te
nc

y
(m

s) Winner Detection
Enclave Build
Report Generation
Sign Executable

Figure 4: Increasing the number of bidders has negligible
impact on the latency which shows scalability.
high-level language into an executable that enables loading it into

an enclave. The executable is then signed before being loaded into

the enclave.

The purpose behind signing the executable is to check if the

loaded executable is indeed legitimate and has not been altered

by a malicious operating system during loading. Our experiments

showed that the operations of signing the executable, generating

reports, and building the enclave take approximately 1600 millisec-

onds, and these times are independent of the number of bidders.

We benchmarked the winner selection performance in terms of

latency. In these experiments, we generated a series of encrypted

bids across different numbers of bidders and measured the time

it takes for the enclave to decrypt the corresponding number of

encrypted bids, find the minimum among them, and construct a

signature that will be used by the smart contract to verify the win-

ner’s address (i.e., operations in Lines 1–17 of Protocol 5). As shown

in Figure 4 (the blue bar at the top), the time it takes to perform the

aforementioned operations marginally increases with the number

of participants. For instance, it only takes 100 milliseconds for the

enclave to identify the winner’s bid with 20 thousand bidders.

We also compare the performance of our proposed remote attes-

tation with Trustee [15].

In Figure 5, the X-axis represents the number of bidders, and

the Y-axis depicts the time in seconds required to complete the

corresponding number of remote attestation requests. Our focus

in this experiment is on assessing how both 𝑃𝐸𝑃𝑃𝐸𝑅 and Trustee

respond to concurrent remote attestation requests originating from

the bidders. To this end, we initiated concurrent remote attestation

requests, from bidders, using 𝑃𝐸𝑃𝑃𝐸𝑅 and Trustee. For each request,

we permitted up to 5 retries in case the remote attestation request

failed due to issues, such as request timeouts. While the number

of remote attestation requests in a typical PEC environment might

not be as numerous, our objective is to demonstrate that 𝑃𝐸𝑃𝑃𝐸𝑅’s

performance excels even in a generic remote attestation approach

when compared to the most relevant method. For more realistic

Table 3: Communication Complexity of 𝑃𝐸𝑃𝑃𝐸𝑅 in Compari-
son with Trustee.

Auction
Creation.

Bidder
Registration.

Remote
Attestation.

Contract
Deployment.

𝑃𝐸𝑃𝑃𝐸𝑅 𝑂 (1) 𝑂 (|B |) 𝑂 (1) 𝑂 (1)
Trustee 𝑂 (1) 𝑂 (|B |) 𝑂 (|B |) 𝑂 (1)

scenarios, for instance, with 50 bidders (not depicted in the Fig-

ure), 𝑃𝐸𝑃𝑃𝐸𝑅 still outperformed Trustee, on average 14.5ms faster

completion time of remote attestation requests (𝑃𝐸𝑃𝑃𝐸𝑅: 284.2ms,

Trustee: 298.7ms)—5%-10% speed up on an average.

In the experimentwith a high number of bidders, both approaches

exhibited similar performance, with 𝑃𝐸𝑃𝑃𝐸𝑅 marginally outper-

forming Trustee for lower numbers of bidders, specifically at 2000

and 3000 – roughly a 1.23× speedup on average. However, as the

number of bidders increased, Trustee’s remote attestation requests

encountered connection timeouts, leading to delays for 4000 bid-

ders and a sudden jump in remote attestation latency. On the other

hand, 𝑃𝐸𝑃𝑃𝐸𝑅 maintained a more consistent and robust perfor-

mance, avoiding any significant delays in request completion, and

completed all the remote attestation requests 2.15× faster. Although
both methods experienced delays with settings of 5000 and 6000

bidders, 𝑃𝐸𝑃𝑃𝐸𝑅’s performance remained more stable, consistently

taking less time across all categories. In a setting with 6000 bidders,

the server that hosts the enclave began to slow down in respond-

ing to both types of requests, as evidenced by the small difference

in the performance of the two approaches. Consequently, we lim-

ited the total number of bidders in this experiment to 6000, as

the server hosting the enclave failed to respond and crashed with

more than 6000 concurrent requests. The failure was due to an

“out-of-memory” error, leading to a cut in the connection.

2000 3000 4000 5000 6000
Number of bidders

0

20

40

60

80

100

120

140

160

Re
m

ot
e

At
te

st
at

io
n

El
ap

se
d

Ti
m

e
(s

)

PEPPER
Trustee [17]

Figure 5: Comparison of remote attestation times for various
numbers of bidders, showing 𝑃𝐸𝑃𝑃𝐸𝑅’s faster performance
compared to Trustee [15] across all categories.

7.3 Complexity Analysis
We also assess the communication complexity of 𝑃𝐸𝑃𝑃𝐸𝑅 in Table 3.

When creating an auction, the RC submits a single transaction to

the smart contract for registration, which results in a constant time

communication complexity. With our improved remote attestation

protocol, generating an attestation request results in a communi-

cation complexity of 𝑂 (1), since the nonce values of bidders are
aggregated and only one single request is sent to the enclave. This

is a significant improvement compared to the original remote attes-

tation protocol, in which the communication complexity increases

linearly with the number of bidders, i.e., 𝑂 (|B|) for B bidders. The

communication complexity for auction registration by B bidders is

𝑂 (|B|) as each bidder needs to send a separate request to the smart

contract. Finally, deploying a smart contract in the 𝑃𝐸𝑃𝑃𝐸𝑅 system

has a constant communication complexity for SP, as it involves a
single transaction sent to the network.

8 CONCLUSION AND FUTUREWORK
In this paper, we proposed a decentralized framework that enables

users to select the PEC servers at the pervasive edge to outsource

their computation. The proposed solution is designed to address

the challenges of providing proper incentives and a trustworthy

environment to persuade end users to participate in the PEC ecosys-

tem, as well as to ensure that the allocation of computation tasks

is fair, transparent, and privacy-preserving. We implemented and

evaluated our framework on top of Ethereum using Intel SGX, and

demonstrated its effectiveness through experimentation. Further-

more, we introduced an innovative method for remote attestation,

which is particularly advantageous in the context of PEC. Notably,

our experiments revealed that 𝑃𝐸𝑃𝑃𝐸𝑅’s remote attestation out-

paces standard remote attestation, offering a more efficient alterna-

tive.

As future work, our research will probe into challenges related

to potentially malicious bidders within the PEC system. Specifically,

we plan to explore the use of verifiable computation techniques to

deter bidders from submitting incorrect results. Additionally, we

will investigate means to build and utilize reputation within the

PEC ecosystem, enabling clients to review and rate bidders based

on the quality of the executed service.

ACKNOWLEDGEMENTS
This research was partially funded by the US National Science Foun-

dation under grants #2148358 and #1914635, and the US Department

of Energy grant #DE-SC0023392. Any opinions, findings and con-

clusions or recommendations expressed in this material are those

of the authors and do not necessarily reflect the views of the US

federal agencies.

REFERENCES
[1] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. 1999. DHAES: An Encryption

Scheme Based on the Diffie-Hellman Problem. IACR Cryptol. ePrint Arch. 1999
(1999), 7.

[2] Gaurav Baranwal, Dinesh Kumar, and Deo Prakash Vidyarthi. 2022. BARA: A

blockchain-aided auction-based resource allocation in edge computing enabled

industrial internet of things. Future Generation Computer Systems 135 (2022),

333–347.

[3] Pietro Borrello, Andreas Kogler, Martin Schwarzl, Moritz Lipp, Daniel Gruss,

and Michael Schwarz. 2022. ÆPIC Leak: Architecturally Leaking Uninitialized

Data from the Microarchitecture. In 31st USENIX Security Symposium (USENIX
Security 22). USENIX Association, Boston, MA, 3917–3934. https://www.usenix.

org/conference/usenixsecurity22/presentation/borrello

[4] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. 2020. Zether:

Towards privacy in a smart contract world. In International Conference on Finan-
cial Cryptography and Data Security. Springer International Publishing, Cham,

423–443.

[5] Ran Canetti. 2004. Universally composable signature, certification, and authenti-

cation. In Proceedings. 17th IEEE Computer Security Foundations Workshop, 2004.
IEEE, Pacific Grove, CA, 219–233.

[6] Valeria Cardellini, Vittoria De Nitto Personé, Valerio Di Valerio, Francisco

Facchinei, Vincenzo Grassi, Francesco Lo Presti, and Veronica Piccialli. 2016.

A game-theoretic approach to computation offloading in mobile cloud comput-

ing. Mathematical Programming 157, 2 (2016), 421–449.

[7] Guoxing Chen, Mengyuan Li, Fengwei Zhang, and Yinqian Zhang. 2019. De-

feating speculative-execution attacks on SGX with HyperRace. In 2019 IEEE
Conference on Dependable and Secure Computing (DSC). IEEE, Hangzhou, China,
1–8.

[8] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah

Johnson, Ari Juels, Andrew Miller, and Dawn Song. 2019. Ekiden: A platform for

confidentiality-preserving, trustworthy, and performant smart contracts. In 2019
IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, Stockholm,

Sweden, 185–200.

[9] K. Chin, K. Emura, K. Omote, and S. Sato. 2022. A Sealed-bid Auction with Fund

Binding: Preventing Maximum Bidding Price Leakage. In 2022 IEEE International
Conference on Blockchain (Blockchain). IEEE Computer Society, Los Alamitos, CA,

USA, 398–405.

[10] CISCO. 2023. Cisco Annual Internet Report (2018–2023) White Pa-

per. https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/

annual-internet-report/white-paper-c11-741490.html

[11] Poulami Das, Lisa Eckey, Tommaso Frassetto, David Gens, Kristina Hostáková,

Patrick Jauernig, Sebastian Faust, and Ahmad-Reza Sadeghi. 2019. FastKitten:

Practical Smart Contracts on Bitcoin.. In USENIX security symposium. USENIX

Association, Santa Clara, CA, 801–818.

[12] Sean Dougherty, Reza Tourani, Gaurav Panwar, Roopa Vishwanathan, Satya-

jayant Misra, and Srikathyayani Srikanteswara. 2021. APECS: A distributed

access control framework for pervasive edge computing services. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security.
Association for Computing Machinery, New York, NY, USA, 1405–1420.

[13] Hisham S Galal and Amr M Youssef. 2018. Succinctly verifiable sealed-bid auction

smart contract. In Data Privacy Management, Cryptocurrencies and Blockchain
Technology. Springer, Cham, 3–19.

[14] Hisham S Galal and Amr M Youssef. 2018. Verifiable sealed-bid auction on the

ethereum blockchain. In International Conference on Financial Cryptography and
Data Security. Springer-Verlag, Berlin, Heidelberg, 265–278.

[15] Hisham S Galal and AmrM Youssef. 2019. Trustee: full privacy preserving vickrey

auction on top of ethereum. In International conference on financial cryptography
and data security. Springer, St. Kitts, 190–207.

[16] Yaodong Huang, Jiarui Zhang, Jun Duan, Bin Xiao, Fan Ye, and Yuanyuan Yang.

2022. Resource Allocation and Consensus of Blockchains in Pervasive Edge

Computing Environments. IEEE Transactions on Mobile Computing 21, 9 (2022),

3298–3311. https://doi.org/10.1109/TMC.2021.3053230

[17] Vibha Jain and Bijendra Kumar. 2022. Auction based cost-efficient resource

allocation by utilizing blockchain in fog computing. Transactions on Emerging
Telecommunications Technologies 33, 7 (2022), e4469.

[18] Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie Brickell, and Frank Mckeen.

2016. Intel software guard extensions: EPID provisioning and attestation services.

White Paper 1, 1-10 (2016), 119.
[19] Thomas Knauth, Michael Steiner, Somnath Chakrabarti, Li Lei, Cedric Xing, and

Mona Vij. 2018. Integrating remote attestation with transport layer security.

[20] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papaman-

thou. 2016. Hawk: The blockchain model of cryptography and privacy-preserving

smart contracts. In 2016 IEEE symposium on security and privacy (SP). IEEE, San
Jose, CA, 839–858.

[21] Michal Król, Alberto Sonnino, Argyrios Tasiopoulos, Ioannis Psaras, and Etienne

Rivière. 2020. PASTRAMI: privacy-preserving, auditable, Scalable & Trustworthy

Auctions for multiple items. Proceedings of the 21st International Middleware

Conference, Delft, 296–310.

[22] Honglei Li and Weilian Xue. 2021. A blockchain-based sealed-bid e-auction

scheme with smart contract and zero-knowledge proof. Security and Communi-
cation Networks 2021 (2021), 1–10.

[23] Li Li, Yue Li, and Ruotong Li. 2021. Double auction-based two-level resource allo-

cation mechanism for computation offloading in mobile blockchain application.

Mobile Information Systems 2021 (2021), 1–15.
[24] Xuelian Liu, Jigang Wu, Long Chen, and Chengpeng Xia. 2019. Efficient auction

mechanism for edge computing resource allocation in mobile blockchain. In 2019
IEEE 21st international conference on high performance computing and communi-
cations; IEEE 17th international conference on smart city; IEEE 5th international
conference on data science and systems (HPCC/SmartCity/DSS). IEEE, Zhangjiajie,
China, 871–876.

[25] Yujiong Liu, Shangguang Wang, Jie Huang, and Fangchun Yang. 2018. A compu-

tation offloading algorithm based on game theory for vehicular edge networks.

In 2018 IEEE International Conference on Communications (ICC). IEEE, Kansas
City, MO, 1–6.

[26] Minghui Liwang, Jiexiang Wang, Zhibin Gao, Xiaojiang Du, and Mohsen Guizani.

2019. Game theory based opportunistic computation offloading in cloud-enabled

IoV. Ieee Access 7 (2019), 32551–32561.
[27] Mohamed-Ayoub Messous, Sidi-Mohammed Senouci, Hichem Sedjelmaci, and

Soumaya Cherkaoui. 2019. A game theory based efficient computation offloading

in an UAV network. IEEE Transactions on Vehicular Technology 68, 5 (2019),

4964–4974.

[28] Stylianos Mystakidis. 2022. Metaverse. Encyclopedia 2, 1 (2022), 486–497.
[29] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. 2016. Pinocchio:

Nearly practical verifiable computation. Commun. ACM 59, 2 (2016), 103–112.

[30] Emrah Sariboz, Kartick Kolachala, Gaurav Panwar, Roopa Vishwanathan, and

Satyajayant Misra. 2021. Off-chain execution and verification of computationally

intensive smart contracts. In 2021 IEEE International Conference on Blockchain
and Cryptocurrency (ICBC). IEEE, Sydney, Australia, 1–3.

[31] Vinnie Scarlata, Simon Johnson, James Beaney, and Piotr Zmijewski. 2018. Sup-

porting third party attestation for Intel® SGX with Intel® data center attestation

primitives. , 12 pages.

[32] Emiliano Sisinni, Abusayeed Saifullah, Song Han, Ulf Jennehag, and Mikael

Gidlund. 2018. Industrial internet of things: Challenges, opportunities, and

directions. IEEE transactions on industrial informatics 14, 11 (2018), 4724–4734.
[33] Alberto Sonnino, Michał Król, Argyrios G Tasiopoulos, and Ioannis Psaras. 2019.

Asterisk: Auction-based shared economy resolution system for blockchain. arXiv
preprint arXiv:1901.07824 (2019).

[34] Yuhu Sun, QiangHe, LianyongQi,Wajid Rafique, andWanchunDou. 2020. Dpoda:

Differential privacy-based online double auction for pervasive edge computing

resource allocation. In Proceedings of the 2nd ACM International Symposium on
Blockchain and Secure Critical Infrastructure. Association for Computing Machin-

ery, New York, NY, USA, 130–141.

[35] Hamed Tabrizchi and Marjan Kuchaki Rafsanjani. 2020. A survey on security

challenges in cloud computing: issues, threats, and solutions. The journal of
supercomputing 76, 12 (2020), 9493–9532.

[36] Tarik Taleb, Konstantinos Samdanis, Badr Mada, Hannu Flinck, Sunny Dutta, and

Dario Sabella. 2017. On multi-access edge computing: A survey of the emerging

5G network edge cloud architecture and orchestration. IEEE Communications
Surveys & Tutorials 19, 3 (2017), 1657–1681.

[37] Reza Tourani, Srikathyayani Srikanteswara, Satyajayant Misra, Richard Chow,

Lily Yang, Xiruo Liu, and Yi Zhang. 2020. Democratizing the Edge: A Pervasive

Edge Computing Framework. arXiv preprint arXiv:2007.00641 1, 1 (2020), 1–7.
[38] XiaojieWang, ZhaolongNing, and SongGuo. 2020. Multi-agent imitation learning

for pervasive edge computing: A decentralized computation offloading algorithm.

IEEE Transactions on Parallel and Distributed Systems 32, 2 (2020), 411–425.
[39] Will Warren and Amir Bandeali. 2017. 0x: An open protocol for decentralized

exchange on the Ethereum blockchain. , 04–18 pages.

[40] GavinWood et al. 2014. Ethereum: A secure decentralised generalised transaction

ledger. Ethereum project yellow paper 151, 2014 (2014), 1–32.
[41] Rui Yuan, Yu-Bin Xia, Hai-Bo Chen, Bin-Yu Zang, and Jan Xie. 2018. Shadoweth:

Private smart contract on public blockchain. Journal of Computer Science and
Technology 33, 3 (2018), 542–556.

[42] Jixian Zhang, Wenlu Lou, Hao Sun, Qian Su, and Weidong Li. 2022. Truthful

auction mechanisms for resource allocation in the Internet of Vehicles with public

blockchain networks. Future Generation Computer Systems 132 (2022), 11–24.
[43] Yahui Zhang, Min Zhao, Tingquan Li, and Huan Han. 2020. Survey of Attacks and

Defenses against SGX. In 2020 IEEE 5th Information Technology and Mechatronics
Engineering Conference (ITOEC). IEEE, Chongqing, China, 1492–1496. https:

//doi.org/10.1109/ITOEC49072.2020.9141835

[44] Shuchen Zhou and Waqas Jadoon. 2020. The partial computation offloading strat-

egy based on game theory for multi-user in mobile edge computing environment.

Computer Networks 178 (2020), 107334.

https://www.usenix.org/conference/usenixsecurity22/presentation/borrello
https://www.usenix.org/conference/usenixsecurity22/presentation/borrello
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://doi.org/10.1109/TMC.2021.3053230
https://doi.org/10.1109/ITOEC49072.2020.9141835
https://doi.org/10.1109/ITOEC49072.2020.9141835

8.1 UC Functionalities

Functionality Fsig
Key Generation: Upon receiving a value (KeyGen, sid) from
some party 𝑆 , verify that sid = (𝑆, sid′) for some sid

′
. If not,

then ignore the request. Else, hand (KeyGen, sid) to the ad-

versary. Upon receiving (VerificationKey, sid, 𝑣) from the ad-

versary, output (VerificationKey, sid, 𝑣) to 𝑆 , and record the

pair (𝑆, 𝑣).
Signature Generation: Upon receiving a value (Sign, sid,𝑚)
from 𝑆 , verify that sid = (𝑆, sid′) for some sid

′
. If not, then

ignore the request. Else, send (Sign, sid,𝑚) to the adversary.

Upon receiving (Signature, sid,𝑚, 𝜎) from the adversary, ver-

ify that no entry (𝑚,𝜎, 𝑣, 0) is recorded. If it is, then output an

error message to 𝑆 and halt. Else, output (Signature, sid,𝑚, 𝜎)
to 𝑆 , and record the entry (𝑚,𝜎, 𝑣, 1).
Signature Verification: Upon receiving a value

(Verify, sid,𝑚, 𝜎, 𝑣0) from some party 𝑃 , hand

(Verify, sid,𝑚, 𝜎, 𝑣0) to the adversary. Upon receiving

(Verified, sid,𝑚, 𝜑) from the adversary do:

(1) If 𝑣0 = 𝑣 and the entry (𝑚,𝜎, 𝑣, 1) is recorded, then
set 𝑓 = 1. (This condition guarantees completeness:

If the verification key 𝑣0 is the registered one and 𝜎

is a legitimately generated signature for𝑚, then the

verification succeeds.)

(2) Else, if 𝑣0 = 𝑣 , the signer is not corrupted, and no entry

(𝑚,𝜎0, 𝑣, 1) for any 𝜎0 is recorded, then set 𝑓 = 0 and

record the entry (𝑚,𝜎, 𝑣, 0). (This condition guarantees
unforgeability: If 𝑣0 is the registered one, the signer is

not corrupted, and never signed𝑚, then the verification

fails.)

(3) Else, if there is an entry (𝑚,𝜎, 𝑣0, 𝑓0) recorded, then
let 𝑓 = 𝑓0. (This condition guarantees consistency:

All verification requests with identical parameters will

result in the same answer.)

(4) Else, let 𝑓 = 𝜑 and record the entry (𝑚,𝜎, 𝑣0, 𝜑).
Output (Verified, id,𝑚, 𝑓) to 𝑃 .

Figure 6: Ideal functionality for signature generation and
verification [5]

8.2 Proof of Theorem 1
Proof 1. We separate the details of protocol execution into two

worlds and demonstrate that Z’s view remains the same in both
worlds.

Part 1: We consider the system setup and auction initiation proto-

cols described in Protocols 1 and 2.

1) Case 0: Bidders and Manager are honest.
a) Real-world: In the real-world (Protocols 1 and 2), SP gen-

erates key pair (𝑝𝑘 , 𝑠𝑘), implements auction smart contract SC,
deploys it on 𝐵𝐶 . The PEC servers in the vicinity who wants to

participate in auction (i.e., bidders) generate their key pairs, (𝑝𝑘𝑖 ,

𝑠𝑘𝑖), 𝑖 ∈ [1 . . . 𝑛] where 𝑛 = |B|. Next, SP creates auction on SC
with auction id 𝑖𝑑𝐴 .Z sees the 𝑆𝐶 , 𝑝𝑘’s of every entity and the 𝑖𝑑𝐴 .

Next, each 𝑏𝑖 ∈ B samples 𝑛𝑜𝑛𝑐𝑒𝑖 from Z
+
and registers auction on

𝑆𝐶 . The provided nonces are aggregated on 𝑆𝐶 . Once the registra-

tion period is over, the managerM retrieves the aggregated nonce

aggnonce and initializes enclave E with it. Note that since bothM
and B are honest, the secret keys of the parties are not visible to

Z. It is important to remember per our adversary model, the SP
is trusted. Hence, the view of Z will be (𝑆𝐶 , 𝑝𝑘 , 𝑝𝑘1 . . . 𝑝𝑘𝑛 , 𝑖𝑑𝐴 ,

𝑛𝑜𝑛𝑐𝑒1 . . . 𝑛𝑜𝑛𝑐𝑒𝑛 , aggnonce , 𝜆) where 𝜆 is the security parameter.

b) Ideal-world: In the ideal-world, S picks security parame-

ter 𝜆, and sends (KeyGen, 𝑠𝑖𝑑) where 𝑠𝑖𝑑 is id of SP and sends

it to Fsig and receives (VerificationKey, sid, 𝑝𝑘). Then, S calls F
bc

with (deploy, 𝑆𝐶, 𝑐𝑜𝑑𝑒, 𝑎𝑑𝑑𝑟E) to simulate the deployment of con-

tract on 𝐵𝐶 . S makes 𝑛 unique calls to Fsig with (KeyGen, 𝑠𝑖𝑑𝑖)
where 𝑖 ∈ [1 . . . 𝑛]. Fsig returns (VerificationKey, sid𝑖 , 𝑝𝑘𝑖) to Z.

Next, S simulating SP creates auction by sending (createAuction,
payment, regTime, regEndTime, auctionEndTime, requiredDeposit)
to Fauction and receives 𝑖𝑑𝐴 . Next, to simulate the bidder registra-

tion, S generates 𝑛 nonce’s, and makes 𝑛 calls to Fauction with

(registerBidder, idA, unonce, pku). To simulate retrieval of aggnonce
for the auction with id 𝑖𝑑𝐴 , S sends (getAggNonce, 𝑖𝑑𝐴) to Fauction.
Upon receiving aggnonce , S sends (initEnclave, aggnonce , 𝑢𝑖𝑑) to
Fauction to initialize the enclave. The view ofZ remains the same

as in the real-world, i.e., (𝑆𝐶, 𝑝𝑘, 𝑝𝑘1 . . . 𝑝𝑘𝑛 , 𝑖𝑑𝐴 , 𝑛𝑜𝑛𝑐𝑒1 . . . 𝑛𝑜𝑛𝑐𝑒𝑛 ,
aggnonce , 𝜆).
2) Case 1: Malicious bidders and honest manager.

a) Real-world: Per our adversary model, some bidders may act

maliciously. As in previous case, the SP generates (𝑝𝑘, 𝑠𝑘) pair
and deploys 𝑆𝐶 on 𝐵𝐶 . Bidder generate their keypairs, (𝑝𝑘𝑖 , 𝑠𝑘𝑖),

𝑖 ∈ [1 . . . 𝑛] where 𝑛 = |B|. Then, SP creates auction as in previous

step and receives 𝑖𝑑𝐴 .Z has access to the public and private keys

of malicious bidders, the public keys of honest bidders, SP’s public
key and 𝑖𝑑𝐴 . Next, each bidder provides their randomnonce to smart

contract by registering. The provided nonce’s are aggregated on 𝑆𝐶 .

The malicious bidders may attempt to notifyM to initialize the E

before the end of registration period; however, 𝑆𝐶 would check and

revert the request that attempts to retrieve aggregated nonce. Man-

ager, since honest, retrieves aggnonce and initializes enclave. Let the
set of malicious bidders be B′, such that B′ ⊂ B. The view ofZ will

be (𝑆𝐶, {𝑝𝑘𝑖 , 𝑠𝑘𝑖 }𝑖∈B′ , {𝑝𝑘 𝑗 } 𝑗∈B, 𝑖𝑑𝐴, 𝑛𝑜𝑛𝑐𝑒1 . . . 𝑛𝑜𝑛𝑐𝑒𝑛 , aggnonce).
b) Ideal-world: As in Case 0, S simulates the role of SP and

generates (𝑝𝑘, 𝑠𝑘) from Fsig. S sends (deploy, 𝑆𝐶, 𝑐𝑜𝑑𝑒, 𝑎𝑑𝑑𝑟E) to
F
bc

and receives 𝑖𝑑𝐴 for the auction. For the honest bidders, B−B′,
S creates 𝑝𝑘 ←$ {0, 1}𝑘 . Corrupt bidders in B′ ⊂ B are handled by

A. Following the same approach as in Case 0’s ideal-world, S sim-

ulates the actions of B by creating 𝑛𝑜𝑛𝑐𝑒 for every 𝑏𝑖 ∈ B and calls

Fauction to register by sending (registerBidder, idA, unonce, pku) for
each bidder. Next, S retrieves aggnonce for the auction with id

𝑖𝑑𝐴 . Upon receiving aggnonce , S simulates initialization of enclave

by sending (initEnclave, aggnonce , 𝑢𝑖𝑑) to Fauction. The view of

Z will be (𝑆𝐶, {𝑝𝑘𝑖 , 𝑠𝑘𝑖 }𝑖∈B′ , {𝑝𝑘 𝑗 } 𝑗∈B\B′ , 𝑖𝑑𝐴, 𝑛𝑜𝑛𝑐𝑒1 . . . 𝑛𝑜𝑛𝑐𝑒𝑛 ,
aggnonce) which is the same as in the real-world.

3) Case 2: Honest bidders and malicious manager.
a) Real-world: As in previous cases, SP generates key pairs

and deploys 𝑆𝐶 on 𝐵𝐶 . Next, SC generates auction with 𝑖𝑑𝐴 on 𝐵𝐶 .

Bidders interested in auction, generates key-pairs, samples 𝑛𝑜𝑛𝑐𝑒

and register for the auction with 𝑖𝑑𝐴 . Once registration period is

over,M retrieves the aggregated nonce aggnonce from 𝑆𝐶 and ini-

tializes the E. During the initialization, the maliciousM can initiate

the E with different 𝑛𝑜𝑛𝑐𝑒 than the legitimate aggnonce . However,
this attempt will be caught by the honest biddders during remote

attestation—the enclave generated report will include 𝑛𝑜𝑛𝑐𝑒 that is

different than the one on 𝑆𝐶 that is publicly available to all users.

Hence, the view ofZ is (𝑆𝐶 , 𝑝𝑘 , 𝑝𝑘1 . . . 𝑝𝑘𝑛 , 𝑖𝑑𝐴 , 𝑛𝑜𝑛𝑐𝑒1 . . . 𝑛𝑜𝑛𝑐𝑒𝑛 ,

aggnonce , 𝜆) where 𝜆 is the security parameter.

b) Ideal-world: As in ideal-world of Case 1’s, the simulator S is

responsible for simulating the key-pair generation, the deployment

of the smart contract SC, and the creation of the auction on the

blockchain for the service providerSP. For each bidder,S simulates

the key generation and generates a nonce, which is used to call the

function Fauction with the arguments (registerBidder, idA, unonce,
pku). Then,Z retrieves the aggnonce for the auction with id 𝑖𝑑𝐴 by

sending (getAggNonce, 𝑖𝑑𝐴) to Fauction. During initialization of E,

ifZ use wrong aggnonce than the legitimate one, the S will reveal it

during the verification of report on behalf of honest bidders. Thus,

the view of Z will be (𝑆𝐶 , 𝑝𝑘 , 𝑝𝑘1 . . . 𝑝𝑘𝑛 , 𝑖𝑑𝐴 , 𝑛𝑜𝑛𝑐𝑒1 . . . 𝑛𝑜𝑛𝑐𝑒𝑛 ,

aggnonce , 𝜆) which is same as real-world case.

4) Case 3: Malicious bidders and malicious manager.
a) Real-world: As in Case 1’s real-world, SP generates key-

pairs, deploys 𝑆𝐶 and creates auction. Similarly, interested bidders

generate key-pairs, samples nonce and register for the auction.

Upon end of registration period,M retrieves auction. Since mali-

cious, theM attempts to initialize E with different aggnonce . How-
ever, the𝑀 ’s attempt will be revealed during remote attestation by

the honest bidders. Hence, the view ofZ is (𝑆𝐶, {𝑝𝑘𝑖 , 𝑠𝑘𝑖 }𝑖∈B′ , {𝑝𝑘 𝑗 } 𝑗∈B,
𝑖𝑑𝐴, 𝑛𝑜𝑛𝑐𝑒1 . . . 𝑛𝑜𝑛𝑐𝑒𝑛 , aggnonce) where B′ is set of malicious bid-

ders such that B′ ⊂ B.
b) Ideal-world: In the ideal-world scenario of Case 1, the simu-

lator S simulates the role of the service provider by generating key-

pairs, deploying the smart contract 𝑆𝐶 on the blockchain, and cre-

ating the auction. Honest bidders generate their key-pairs, sample

nonces, and register for the auction. The environment handles the

corrupted bidders. Once the registration period ends, the environ-

ment retrieves the aggregate nonce aggnonce from the smart contract

𝑆𝐶 . However, as a malicious party, the environment may attempt

to initialize the enclave with a different value than the legitimate

aggnonce . This attempt will fail during remote attestation because

S will abort the protocol execution on behalf of the honest parties.

Thus, the environment’s view is (𝑆𝐶, {𝑝𝑘𝑖 , 𝑠𝑘𝑖 }𝑖∈B′ , {𝑝𝑘 𝑗 } 𝑗∈B, 𝑖𝑑𝐴,
𝑛𝑜𝑛𝑐𝑒1 . . . 𝑛𝑜𝑛𝑐𝑒𝑛 , aggnonce).
Part 2:We now consider the remote attestation and bid submission

protocol that runs between the bidders and enclave as described

in Protocol 3 and 4. We note that the enclave is honest party per

our adversary model; hence, we do not consider any malicious case

from the enclave. Morever, the ECIES related operations for the

honest parties are omitted due to them being honest by definition.

1) Case 0: Honest bidders.
a) Real-world: In the real world of Protocol 3, E generates x509

certificate 𝐶𝑒𝑟𝑡E and concatenates it with aggnonce . Next, enclave
computes the digest of the result and use it to generate a attesta-

tion report for the bidders B. The bidders retrieves the 𝑝𝑘𝐸 and

𝐶𝑒𝑟𝑡E from enclave. Then they all retrieve the aggnonce individu-
ally from 𝑆𝐶 and re-compute (𝐶𝑒𝑟𝑡𝐸 ∥𝑎𝑔𝑔𝑛𝑜𝑛𝑐𝑒). Bidders then com-

pare the value in the 𝑢𝑠𝑒𝑟𝐷𝑎𝑡𝑎 field of the report to the digest.

If the values are equal, the remote attestation step is now com-

pleted. Each bidder encrypts their bid and calls the SendBid func-

tion of 𝑆𝐶 with (𝑖𝑑𝐴 , 𝑐𝑏𝑖𝑑𝑖 , 𝑑𝑒𝑝𝑜𝑠𝑖𝑡), where 𝑐𝑏𝑖𝑑𝑖 represents the

encrypted bid of the i’th bidder. Once the bid submission period

is over,M retrieves the bids of auction 𝑖𝑑𝐴 and sends them to E

for the decryption. The view ofZ is (𝑝𝑘E, 𝐶𝑒𝑟𝑡E, 𝑟𝑒𝑝𝑜𝑟𝑡 , aggnonce ,
{𝑛𝑜𝑛𝑐𝑒𝑖 , 𝑝𝑘𝑖 , 𝑐𝑏𝑖𝑑𝑖 , 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖 }𝑖∈B).

b) Ideal-world: In the ideal world, S sends (reportGen, ℎ) to
Fauction and receives (aggnonce, 𝑒𝑐𝑒𝑟𝑡, 𝑒𝑟𝑒𝑝𝑜𝑟𝑡, ℎ). Then, to simu-

late the actions of bidders, Fauction sends (reportVer, idA, 𝑟𝑒𝑝𝑜𝑟𝑡)
for each 𝑏𝑖 ∈ B to Fauction. If the verification is true, S receives

(𝑣𝑒𝑟𝑖 𝑓 𝑖𝑒𝑑). Next, S simulates the bid submission operations of bid-

der 𝑛 times each being unique for 𝑛 different bidders by sending

(bidSubmit, idA, 𝑢𝑏𝑖𝑑,𝑢𝑑𝑒𝑝𝑜𝑠𝑖𝑡) to Fauction. Since the bidders are
honest, the view ofZ is (𝑝𝑘E,𝐶𝑒𝑟𝑡E, 𝑟𝑒𝑝𝑜𝑟𝑡 , aggnonce , {𝑛𝑜𝑛𝑐𝑒𝑖 , 𝑝𝑘𝑖 ,
𝑐𝑏𝑖𝑑𝑖 , 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖 }𝑖∈B) which is same as real-world.

2) Case 1: Malicious bidders.
a) Real-world: Similar to the previous scenario, the enclave pro-

duces 𝐶𝑒𝑟𝑡E and an attestation report. Bidders retrieve the public

key (𝑝𝑘) of the enclave, the attestation report (𝑟𝑒𝑝𝑜𝑟𝑡), the certifi-

cate, and the aggnonce separately and use them to validate the report.

If the verification is true, each bidder generates a random bid (𝑏𝑖𝑑𝑖)

and encrypts it before submitting it to 𝑆𝐶 . Malicious bidders can dis-

card the auction at this stage by claiming that the 𝑟𝑒𝑝𝑜𝑟𝑡 is incorrect,

but this does not affect the system’s security. Next, bidders create a

shared-secret key (𝑠𝑠) and produce a (𝑘𝑀𝐴𝐶 , 𝑘𝐸𝑁𝐶) pair using KDF
and KAF algorithms. Each bidder encrypts their bid using 𝑘𝐸𝑁𝐶

and submits it to 𝑆𝐶 along with their 𝑑𝑒𝑝𝑜𝑠𝑖𝑡 . Malicious bidders

can submit incorrect ciphertext instead of encrypting their bid with

𝑘𝐸𝑁𝐶 . However, during the decryption process, the E will exclude

those bids, and the 𝑆𝐶 code will prevent the malicious bidders from

retrieving their 𝑑𝑒𝑝𝑜𝑠𝑖𝑡 . Hence, there isn’t any rational financial

reason for acting malicious. The view ofZ is (𝑝𝑘E, 𝐶𝑒𝑟𝑡E, 𝑟𝑒𝑝𝑜𝑟𝑡 ,

aggnonce , {𝑛𝑜𝑛𝑐𝑒𝑖 , 𝑝𝑘𝑖 , 𝑐𝑏𝑖𝑑𝑖 , 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖 }𝑖∈B, {𝑠𝑘 𝑗 , 𝑝𝑘 𝑗 } 𝑗∈B\B′) where
B′ is honest bidders.

b) Ideal-world: In an ideal world,Swould send (reportGen,ℎ) to
Fauction and receive (aggnonce, 𝑒𝑐𝑒𝑟𝑡, 𝑒𝑟𝑒𝑝𝑜𝑟𝑡, ℎ). Then, to simulate

the actions of bidders, Fauction would send (reportVer, idA, 𝑟𝑒𝑝𝑜𝑟𝑡)
for each 𝑏𝑖 ∈ B to Fauction. If the verification is true, S receives

(𝑣𝑒𝑟𝑖 𝑓 𝑖𝑒𝑑). Once the remote attestation period is over, S gener-

ates a key pair (𝑝𝑘𝑖 , 𝑠𝑘𝑖) for each bidder. For the malicious bidders,

S sends their key pairs to Z. Both S and Z use the same KAF
and KDF functions, resulting in 𝑘𝑀𝐴𝐶 and 𝑘𝐸𝑁𝐶 variables being

the same. For the honest bidders, S simulates bid generation and

encryption operations, while for the corrupted bidders, Z sam-

ples 𝑏𝑖𝑑𝑖 and encrypts their bids, which are then sent to S. If Z
uses different 𝑘𝐸𝑁𝐶 , S will discard them during decryption, re-

sulting in the failure of the attack. Eventually, all the bids will get

decrypted, and S will identify the winning bid. Hence, the view of

Z is (𝑝𝑘E,𝐶𝑒𝑟𝑡E, 𝑟𝑒𝑝𝑜𝑟𝑡 , aggnonce , {𝑛𝑜𝑛𝑐𝑒𝑖 , 𝑝𝑘𝑖 , 𝑐𝑏𝑖𝑑𝑖 , 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑖 }𝑖∈B,
{𝑠𝑘 𝑗 , 𝑝𝑘 𝑗 } 𝑗∈B\B′) which is same as real-world.

Part 3:We now consider winner announcement protocol that fa-

cilitates the setting of the winner address and involves interactions

between the enclave and the manager, as outlined in Protocol 5.

1) Case 0: Honest Manager.

a) Real-world: The managerM retrieves the signature of the

enclave E, the winner bid𝑚𝑖𝑛𝐵𝑖𝑑 , and the address of the winner

𝑎𝑑𝑑𝑟𝑤𝑖𝑛𝑛𝑒𝑟 from the manager.M constructs transaction 𝑡𝑥𝑀 and

calls the SetWinner function. The 𝑆𝐶 first verifies if the 𝜎E is signed

by the enclave. If so, the 𝑆𝐶 updates the winner address and the win-

ner bid on the 𝑆𝐶 . Hence, the view ofZ will be (𝑚𝑖𝑛𝐵𝑖𝑑 ,𝑎𝑑𝑑𝑟𝑤𝑖𝑛𝑛𝑒𝑟 ,

𝑎𝑑𝑑𝑟E, 𝜎E).

b) Ideal-world: In the ideal world,S receives (𝜎E,𝑚𝑖𝑛𝐵𝑖𝑑 ,𝑎𝑑𝑑𝑟𝑤𝑖𝑛𝑛𝑒𝑟)

from the enclave. TheS sends (setWinner, 𝑖𝑑𝐴 ,𝜎E,𝑚𝑖𝑛𝐵𝑖𝑑, 𝑎𝑑𝑑𝑟𝑤𝑖𝑛𝑛𝑒𝑟)

to Fauction. Upon receiving it, Fauction first retrieves the 𝑎𝑑𝑑𝑟𝐸 from

scTable and sends (Sign, 𝑢𝑖𝑑 , 𝑚𝑖𝑛𝐵𝑖𝑑 , 𝑎𝑑𝑑𝑟𝑤𝑖𝑛𝑛𝑒𝑟 , 𝑎𝑑𝑑𝑟E) to Fsig.
Upon receiving (Signature, 𝑢𝑖𝑑 , 𝑚𝑖𝑛𝐵𝑖𝑑 , 𝑎𝑑𝑑𝑟𝑤𝑖𝑛𝑛𝑒𝑟 , 𝑎𝑑𝑑𝑟E, 𝜎

′
E
),

Fauction checks if 𝜎E equals 𝜎′
E
. If so, it updates the winner address

to 𝑎𝑑𝑑𝑟𝑤𝑖𝑛𝑛𝑒𝑟 . Thus, the view of Z will be (𝑚𝑖𝑛𝐵𝑖𝑑 , 𝑎𝑑𝑑𝑟𝑤𝑖𝑛𝑛𝑒𝑟 ,

𝑎𝑑𝑑𝑟E, 𝜎E), which is the same as the real world.

2) Case 1: Malicious Manager .

a) Real-world: As in the previous case, theM retrieves (𝜎E,

𝑚𝑖𝑛𝐵𝑖𝑑 , 𝑎𝑑𝑑𝑟𝑤𝑖𝑛𝑛𝑒𝑟) from the E. Instead of assigning the winner

address to 𝑎𝑑𝑑𝑟𝑤𝑖𝑛𝑛𝑒𝑟 , the manager may attempt to assign it to

another entity. However, since the 𝜎E is verified on-chain, this

attempt will fail during verification. As in the previous case, the

M sends the transaction to the 𝐵𝐶 , and if the signature is valid,

the winner address is updated on the 𝑆𝐶 . Thus, the view of Z is

(𝑚𝑖𝑛𝐵𝑖𝑑 , 𝑎𝑑𝑑𝑟𝑤𝑖𝑛𝑛𝑒𝑟 , 𝑎𝑑𝑑𝑟E, 𝜎E).

b) Ideal-world: As in the previous case’s ideal-world, S receives

(𝜎E,𝑚𝑖𝑛𝐵𝑖𝑑 , 𝑎𝑑𝑑𝑟𝑤𝑖𝑛𝑛𝑒𝑟).Z may attempt to change the 𝑎𝑑𝑑𝑟𝑤𝑖𝑛𝑛𝑒𝑟

to another entity’s address. However, Fauction will first check if the

𝜎E is legitimate by interacting with Fsig. Hence, the attempt ofZ
will be caught. Thus, the view ofZ is (𝑚𝑖𝑛𝐵𝑖𝑑 , 𝑎𝑑𝑑𝑟𝑤𝑖𝑛𝑛𝑒𝑟 , 𝑎𝑑𝑑𝑟E,

𝜎E), which is the same as in the real-world.

	Abstract
	1 Introduction
	2 Background
	2.1 Trusted Execution Environment
	2.2 Ethereum and Smart Contracts
	2.3 Cryptographic Preliminaries

	3 Related Work
	3.1 Privacy-preserving Auction
	3.2 Privacy-preserving Smart Contracts
	3.3 Incentive-based Resource Utilization

	4 Models and Assumptions
	4.1 System Model
	4.2 Threat Model
	4.3 Security Assumptions

	5 PEPPER Construction
	5.1 Design Overview
	5.2 PEPPER Detailed Design

	6 Security Analysis
	6.1 Informal Security Analysis
	6.2 Formal Security Analysis

	7 Experimental Results and Analysis
	7.1 Implementation Scope
	7.2 Results and Analysis
	7.3 Complexity Analysis

	8 Conclusion and Future work
	References
	8.1 UC Functionalities
	8.2 Proof of Theorem 1

