Off-chain Execution and Verification of
Computationally Intensive Smart Contracts

Emrah Sariboz, Kartick Kolachala, Gaurav Panwar, Roopa Vishwanathan, and Satyajayant Misra
Department of Computer Science
New Mexico State University
Las Cruces, NM, USA
{emrah, kart1712, gpanwar, roopav, misra} @nmsu.edu

Abstract—We propose a novel framework for off-chain exe-
cution and verification of computationally-intensive smart con-
tracts. Our framework is the first solution that avoids duplication
of computing effort across multiple contractors, does not require
trusted execution environments, supports computations that do
not have deterministic results, and supports general-purpose
computations written in a high-level language. Our experiments
reveal that some intensive applications may require as much as
141 million gas, approximately 71x more than the current block
gas limit for computation in Ethereum today, and can be avoided
by utilizing the proposed framework.

Index Terms—smart contract verification, verifiable computa-
tion

I. INTRODUCTION

A smart contract is a computer program that resides on
the Ethereum blockchain and gets executed automatically
when predetermined conditions are met. Depending on the
complexity, every transaction that modifies a smart contract’s
state consumes a certain amount of gas (the unit of cost in the
Ethereum blockchain). As a result of this, it becomes infeasible
to use smart contracts for computationally intensive applica-
tions such as image recognition and zero-knowledge proofs.
In this paper, we refer to such contracts as computationally
intensive smart contracts (CICs).

Recent studies have explored alternative solutions to elim-
inate the cost and make CIC execution scalable. Proposed
solutions to this end either replicate the CIC’s execution
across a small subset of nodes or require a Trusted Execu-
tion Environment (TEE), which engenders greater trust. An
alternative to the aforementioned methods is to outsource the
CIC computation to a third party that does the computation
and generates a proof of correctness for the same, that can
be verified in polynomial time. Using this approach, the client
can verify the returned computation’s correctness in a much
more efficient manner than re-executing it. Our work falls into
verifiable computation category where we propose a solution

Research supported by NSF awards #1800088, #2028797, #1914635, Intel
Labs, and the Federal Aviation Administration (FAA). Any opinions, findings,
and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the NSF, FAA, and
Intel Inc.

978-0-7381-1420-0/21/$31.00 ©2021 IEEE

that is scalable, avoids duplicating computations, and does
not require tamper-resistant hardware or trusted execution
environments.

II. RELATED WORK

Trusted Hardware: TEE has been adopted to alleviate scala-
bility and confidentiality obstructions of smart contracts in [1]—
[3]. However, recent studies have identified several attack on
SGX — we avoid the impact as we do not need SGX [4]]—[|10].
Replicated Computation: Outsourcing CIC execution to a set
of delegators has been proposed by [11]]; however, this model
suffers from the large overhead of replicated computation and
lacks support for randomized computations, which we address
in our work. Verifiable Computation: Interactive proofs (IPs)
[12] and probabilistically checkable proofs (PCPs) [[13] laid
the foundations of provable verifiable computation which has
been studied in [14]-[21]. Despite promising asymptotics,
these proof systems are highly impractical and may take inor-
dinately long to verify instances with small input sizes [22].
Another line of work applies the above theoretical foundations
to practice on cloud computing settings studied in [23]-
[25]; however, they are far from being scalable for general-
purpose computation. Adoption of zk-SNARKSs [26] to verify
smart contracts was proposed by [27]]; however, their solution
requires that the application code be written in a domain-
specific language that they designed. This differs from our
work as our work supports computations that are written in a
high-level language.

III. CONSTRUCTION

The components of our framework are as follows: a client
(Alice) who wishes to outsource a computationally intensive
job, a worker (Bob) who does the computation for the client
in exchange for some monetary reward, a miner (Charlie) to
validate the transactions, and Broker contract, a smart contract
which acts as an intermediary between the client and the
worker.

Client’s Operations: Alice writes the details of the smart
contract to be executed to her publicly accessible server Step
1 in Figure [I] The details contain the inputs needed for
execution, the fee given to a worker, the collateral the worker
needs to deposit to register for this job, and the maximum
time she is willing to allot for the computation result to be

Proof & result retrieved
and verified by miner

I

Broker Confract

N o Sees the request

Ethereum

. Compute
‘ H 1Qc:all assignWorker() Job Locally
gcall getPaid() @

L : BoO
@ Pay Bob if proof correct o

-~ T

files o8

) Groves " £2
)

=}

Alice’s Server o

Bob’s Server

Fig. 1. Schematic diagram of interactions between the entities and the corresponding function calls in the framework.

delivered to her. She posts this job creation request to the
blockchain by interacting with the Broker Contract in Step
2. This request contains the URL of her server, which has all
the aforementioned details.

Worker’s Operations: If Bob is interested in executing the
computation, he goes to the specified server URL to check
whether he has enough resources to complete the computation
within the requested time interval in Step 3 and registers
for the job by depositing the required collateral to Broker
Contract in Step 4. He retrieves the inputs needed for the
computation from Alice’s server in Step 5. He performs the
computation locally in Step 6, generates proof of correctness,
and uploads them to his server in Step 7. He then submits
the URL to Broker Contract for the verification by calling
getPaid() function in Step 8 to get compensated for his work
which internally starts the proof-verification mechanism.

Miner’s Operations: Charlie picks up the transaction
posted by Bob, executes the Broker Contract, and retrieves
the result and proof from Bob’s server in Step 9. The Broker
Contract checks whether the proof was posted within a speci-
fied time limit, verifies the proof and result, and posts them to
Alice’s server. Broker Contract outputs a transaction paying
Bob his fee and refunding his collateral if the verifications are
successful in Step 10. However, Alice gets refunded her fee
and also gets Bob’s collateral if the verifications fail.

TABLE I
THE MEAN AND STANDARD DEVIATION FOR COMPUTATIONALLY
INTENSIVE APPLICATIONS

Computation Input KeyGen (s) | ProofGen (s) | Verify (ms)
Matrix Mult. 70x70 | 40.254+1.48 | 117.91+4.24 242
110X 110 158.431+8.89] 487.461+93.50 9+10
Image Mach. 45%x45 | 32.2340.76 | 75.12+1.89 70+61
85%85 115.89+3.32| 317.88+8.68 9+2
MultiVar Poly 500040 | 36.231+2.58 | 140.8147.12 8+2
644170 | 65.770£3.60 | 1220.82+8.59 812
Floyd-Warshall 16x16 | 45.574+3.00 | 112.06+6.86 1+2
25x25 166.40+4.36| 514.994+13.35 3+7

IV. RESULTS AND EVALUATION

The proposed framework’s performance has been evaluated
on four computationally intensive applications as in [22].

Matrix Multiplication takes two n xXn matrices as an input,
M; and M, and computes M - M5. Image Matching takes
a ky X kp, (ky = kp = 3) sized image kernel and computes
the point in an image where the minimum difference happens
between the image and the kernel. Multi-Variate polynomial
evaluation takes a polynomial of degree m, containing (m +
1)"' coefficients, and evaluates it over k (k = 5) variables
taken as inputs. Floyd-Warshall algorithm takes an n x n
matrix representing the adjacency matrix of an n-vertex graph.
It computes the shortest paths among all the vertices.

According to our calculations, the gas required to implement
these applications in smart contracts is infeasible given the
current block gas limit of ~12 million [28]], e.g., 142 million
gas units for image matching.

Evaluation: The above applications were written in C and
first transformed into an arithmetic circuit. Next, the Pinocchio
compiler is used to generate Quadratic Arithmetic Program
(QAP), evaluation and verification keys [22]. In our experi-
ments, the key generation phase is completed by the client
and given to the worker along with the QAP. On receiving
these parameters, the worker executes the code and posts the
proof to the server he controls.

Our experimental results, detailed in Table [I show that our
framework provides quick proof verification, for different sizes
of input parameters for all applications. The framework also
maintains a constant proof size of 288 bytes in all cases. As
expected, we have noticed an increase in the proof generation
time with an increase in the application parameters’ size. This
growth was linear for all except image matching, which was
super linear due to an increase in the number of multiplication
gates and equality comparisons in the equivalent arithmetic
table.

V. CONCLUSION

We proposed a novel framework for execution and the ver-
ification of the CICs by offloading them to a computationally
powerful entity using an incentive mechanism. Unlike other
proposed solutions, our work prevents replicated computation,
eliminates the need for TEEs, and supports computations with
random results.

[1]

[2

—

[3]

[4]

[5]

[6

=

[7

—

[8]

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

REFERENCES

P. Das, L. Eckey, T. Frassetto, D. Gens, K. Hostdkovd, P. Jauernig,
S. Faust, and A.-R. Sadeghi, “Fastkitten: practical smart contracts on
bitcoin,” in 28th USENIX Security Symposium (USENIX Security 19),
2019, pp. 801-818.

R. Cheng, F. Zhang, J. Kos, W. He, N. Hynes, N. Johnson, A. Juels,
A. Miller, and D. Song, “Ekiden: A platform for confidentiality-
preserving, trustworthy, and performant smart contract execution,” arXiv
preprint arXiv:1804.05141, 2018.

K. Wiist, S. Matetic, S. Egli, K. Kostiainen, and S. Capkun, “Ace:
Asynchronous and concurrent execution of complex smart contracts,”
in Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS *20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 587-600.

M. Hihnel, W. Cui, and M. Peinado, “High-resolution side channels
for untrusted operating systems,” in 2017 USENIX Annual Technical
Conference (USENIX ATC) 17, 2017, pp. 299-312.

A. Moghimi, G. Irazoqui, and T. Eisenbarth, “Cachezoom: How SGX
amplifies the power of cache attacks,” in International Conference on
Cryptographic Hardware and Embedded Systems. Springer, 2017, pp.
69-90.

J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx,
“Telling your secrets without page faults: Stealthy page table-based
attacks on enclaved execution,” in 26th USENIX Security Symposium
(USENIX Security 17), 2017, pp. 1041-1056.

S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado, “Inferring
fine-grained control flow inside SGX enclaves with branch shadowing,”
in 26th USENIX Security Symposium (USENIX Security 17), 2017, pp.
557-574.

Y. Xu, W. Cui, and M. Peinado, “Controlled-channel attacks: Deter-
ministic side channels for untrusted operating systems,” in 2015 IEEE
Symposium on Security and Privacy. 1EEE, 2015, pp. 640-656.

A. Nilsson, P. N. Bideh, and J. Brorsson, “A Survey of Published Attacks
on Intel SGX,” Tech. Rep.

J. Gotzfried, M. Eckert, S. Schinzel, and T. Miiller, “Cache attacks on
Intel SGX,” in Proceedings of the 10th European Workshop on Systems
Security, 2017, pp. 1-6.

S. Das, V. J. Ribeiro, and A. Anand, “Yoda: Enabling computationally
intensive contracts on blockchains with byzantine and selfish nodes,”
arXiv preprint arXiv:1811.03265, 2018.

U. Feige, S. Goldwasser, L. Lovész, S. Safra, and M. Szegedy, “Inter-
active proofs and the hardness of approximating cliques,” Journal of the
ACM (JACM), vol. 43, no. 2, pp. 268-292, 1996.

S. Arora and S. Safra, “Probabilistic checking of proofs: A new
characterization of np,” Journal of the ACM (JACM), vol. 45, no. 1,
pp. 70-122, 1998.

P. Golle and S. G. Stubblebine, “Secure distributed computing in a
commercial environment,” in Financial Cryptography, 5th International
Conference, FC 2001, Grand Cayman, British West Indies, February
19-22, 2002, Proceedings, 2001, pp. 279-294.

W. Du and M. T. Goodrich, “Searching for high-value rare events with
uncheatable grid computing,” in Applied Cryptography and Network
Security, Third International Conference, ACNS, 2005, pp. 122-137.
R. Sion, “Query execution assurance for outsourced databases,” in
Proceedings of the 31st International Conference on Very Large Data
Bases VLDB, 2005, pp. 601-612.

P. Golle and I. Mironov, “Uncheatable distributed computations,” in
Topics in Cryptology - CT-RSA 2001, The Cryptographer’s Track at
RSA Conference 2001, San Francisco, CA, USA, April 8-12, 2001,
Proceedings, 2001, pp. 425-440.

G. Cormode, M. Mitzenmacher, and J. Thaler, “Practical verified com-
putation with streaming interactive proofs,” in Innovations in Theoretical
Computer Science ITCS, 2012, pp. 90-112.

S. Goldwasser, Y. T. Kalai, and G. N. Rothblum, “Delegating computa-
tion: interactive proofs for muggles,” in Proceedings of the 40th Annual
ACM Symposium on Theory of Computing STOC, 2008, pp. 113-122.
R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers,” in Advances in
Cryptology - CRYPTO, T. Rabin, Ed., 2010, pp. 465-482.

K. Chung, Y. T. Kalai, and S. P. Vadhan, “Improved delegation of
computation using fully homomorphic encryption,” in Advances in
Cryptology - CRYPTO, 2010, pp. 483-501.

[22]

(23]

[24]

[25]

[26]

[27]

[28]

B. Parno, J. Howell, C. Gentry, and M. Raykova, “Pinocchio: Nearly
practical verifiable computation,” in 2013 IEEE Symposium on Security
and Privacy. 1EEE, 2013, pp. 238-252.

S. T. V. Setty, R. McPherson, A. J. Blumberg, and M. Walfish, “Making
argument systems for outsourced computation practical (sometimes),”
in 19th Annual Network and Distributed System Security Symposium,
NDSS. The Internet Society, 2012.

S. T. V. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and
M. Walfish, “Taking proof-based verified computation a few steps closer
to practicality,” in Proceedings of the 21th USENIX Security Symposium.
USENIX Association, 2012, pp. 253-268.

V. Vu, S. T. V. Setty, A. J. Blumberg, and M. Walfish, “A hybrid
architecture for interactive verifiable computation,” in IEEE Symposium
on Security and Privacy, SP. IEEE Computer Society, 2013, pp. 223—
237.

N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer, “From extractable
collision resistance to succinct non-interactive arguments of knowledge,
and back again,” in Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, ser. ITCS *12. New York, NY, USA:
Association for Computing Machinery, 2012, p. 326-349. [Online].
Available: https://doi.org/10.1145/2090236.2090263

J. Eberhardt and S. Tai, “Zokrates - scalable privacy-preserving off-
chain computations,” 2018 IEEE International Conference on Internet
of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CP-
SCom) and IEEE Smart Data (SmartData), pp. 1084-1091, 2018.
Ethereum Stats, 2020 (accessed December 16, 2020). [Online].
Available: https://ethstats.net/

https://doi.org/10.1145/2090236.2090263
https://ethstats.net/

	Introduction
	Related Work
	Construction
	Results And Evaluation
	Conclusion
	References

