
Balance Transfers and Bailouts in Credit Networks
using Blockchains*

Lalitha Muthu Subramanian, Roopa Vishwanathan, Kartick Kolachala
Department of Computer Science, New Mexico State University, USA

{lalitha,roopav,kart1712}@nmsu.edu

Abstract—In this paper, we propose a technique for rebal-
ancing link weights in decentralized credit networks. Credit
networks are peer-to-peer trust-based networks that enable
fast and inexpensive cross-currency transactions compared to
traditional bank wire transfers, which has led to their increasing
popularity and use. Although researchers have studied security
of transactions and privacy of users of such networks, and
have invested significant efforts into designing efficient routing
algorithms for credit networks, comparatively little work has
been done in the area of replenishing credit links of users in
the network. Replenishing links at regular intervals in a credit
network is important to keep users solvent, the network viable
with enough liquidity, and to prevent transaction failures. This
is achieved by a process called rebalancing that enables a poorly
funded user to create incoming as well as outgoing credit links.

We propose a system where a user with zero or no link
weights can create incoming links with existing, trusted users
in the network, in a procedure we call balance transfer, followed
by creating outgoing links to existing or new users that would
like to join the network, a process we call bailout. Both these
processes together constitute our proposed rebalancing mecha-
nism. Our techniques would also serve to make the network more
competitive by offering users lower rates of interest, and enable
users to earn routing fees-based revenue by participating in high
throughput transaction paths.

Index Terms—rebalancing, blockchain, payment networks

I. INTRODUCTION

Blockchain and cryptocurrencies such as Bitcoin [1] have
disrupted the banking industry, enabled new business models,
and helped in designing new, efficient financial infrastructure.
A blockchain is an append-only distributed ledger, where users
post messages or transactions, which are usually considered
immutable. Blockchains have enabled the growth of IOU (I
Owe You) credit networks in recent years. A credit network is
a decentralized peer-to-peer lending network, where users lend
out financial credit based on social trust. Credit networks pro-
vide the means to do path-based payments between two users,
where the payment is routed through multiple intermediate
users. Credit networks offer several advantages over traditional
banks, such as low end-to-end transaction time, lower routing
fees, and the ability to perform cross-currency transactions
in the order of seconds. Some examples of real-world credit
networks are Ripple [2] and Stellar [3].

*Research supported by NSF award #1800088. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science
Foundation.

Credit networks are usually modeled as a directed graph
with vertices and weighted edges/links. The vertices represent
the various users in the system and the weight on a link is
the credit a user is willing to offer to an adjacent user. The
directionality of the link is used to denote the lender and
borrower, e.g., u 20→ v denotes v has extended 20 units of credit
to u. Payments are routed along (and in the direction of) credit
links, and once a payment is made from a sender to receiver,
the link weights are decremented along the transaction path.

There has been growing interest in finding solutions for
efficient routing, and enabling private and secure transactions
in credit networks [4, 5, 6] but not much work has been
done in the area of rebalancing link weights of a user that
has run out of credit, and cannot participate in transactions.
Rebalancing in credit networks is a significant problem to
study, since, if the credit on a given link gets exhausted, i.e.,
if the weight on a link connecting two nodes drops to zero, no
transactions can be done on any path containing those nodes
until the link is refunded, a process which involves expensive
on-chain transactions. Such nodes will be unable to participate
in any transaction due to their inability to transfer or flow
money, and will eventually be shunned by other nodes in the
network. Networks which have large sections of such dormant
nodes will eventually become inefficient, have progressively
low throughput and may not even remain operational. In this
paper, we study the problem of rebalancing links in an efficient
way, while making minimal use of the blockchain, with the
goal of avoiding mining and blockchain write fees.

We propose a two-step rebalancing process wherein a node
whose link weights are low or close to zero, can create fresh
incoming links in a process called balance transfer, and then
create fresh outgoing links in a process called as bailout.
Upon completion of these two steps, the poorly connected
node will become an active participant in the network, become
involved in high throughput transactions, thus enabling it to
collect routing fees. At a high level, balance transfer involves
existing nodes moving outstanding debt to a new lender,
incentivized by lower interest rates, and bailout involves the
lender temporarily being assisted by a bank, who infuses
capital into them to shore up their credit reserves. Once their
earnings exceed their debts, the bank exits the system.

Balance Transfer in Credit Networks: Balance transfer
in the real world occurs when the outstanding balance of one
credit card (or several credit cards) is moved to another credit
card account. This is often done by consumers looking for

ar
X

iv
:2

00
3.

03
40

9v
1

 [
cs

.C
R

]
 6

 M
ar

 2
02

0

lower interest rates. Many credit card issuers offer introductory
balance transfer APRs that are lower than the standard rates.
Another advantage of balance transfer is that it makes financial
management easier by transferring consolidated balances to
a new credit provider. Although lending in blockchain has
become quite common, the idea of doing balance transfers in
credit networks has not been explored. In this paper we design
a system where any lending node with low connectivity can
advertise a lower interest rate, and thus gain more borrowers.

Bailout in Credit Networks: A bailout is a process where
an organization or a government injects capital into a failing
business to save it from bankruptcy, and to help make the
business competitive again. In the context of credit networks,
a bank does a “bailout” of a user, Alice, with no outgoing
credit links by lending credit to her, and temporarily helps
her by connecting her with other users with whom Alice can
establish permanent links. Once she establishes permanent
links with other users, the bank exits the network, possibly
after collecting a small fee from Alice.

Our Contributions: In this paper, we give a new approach
for rebalancing depleted credit links in credit networks.
1) We propose a two-step approach for rebalancing consisting
of balance transfer and bailout. In the balance transfer step,
a poorly connected node, called as requestor, will establish
incoming links with other nodes in the network by advertising
a lower interest rate. This enables the requestor to become a
lender to other nodes. In the bailout step, a well-known party
such as a bank will infuse capital into the requestor node,
by helping it connect to, and establish outgoing links with
several other nodes in the network. After the requestor node
establishes outgoing connections with other nodes, the bank
will leave the network, possibly after collecting a fee from the
requestor. At the end of this process, the requestor node will
have several incoming and outgoing links, which will enable
it to help facilitate several transactions, thus increasing the
overall throughput and robustness of the credit network.
2) Since the performance of our balance transfer step is
highly dependent on being able to find routes efficiently,
we compare and analyze two different routing algorithms
for doing balance transfers: Chord [7] and VOUTE [8], and
evaluate their performance experimentally.

II. RELATED WORK

In this section, we review literature on credit networks,
payment channels, and rebalancing and loaning in credit
networks.
Credit networks: Fulgor and Rayo [9] were the first to
setup a peer-to-peer payment channel network that provides
provable security and privacy properties, with Rayo being the
first payment network that enforces non-blocking transactions.
Fulgor and Rayo, both, establish a path between sender and
receiver, assuming all users in the path to be honest, and users
have at least partial knowledge about network topology. Unlike
Fulgor and Rayo, in our system, the entire network topology
is not known to the users and we do not assume all the users

in the path to be honest. Also, we do not propose any payment
operations, instead focus only on rebalancing credit links.

SilentWhispers [5] presents a decentralized credit network
(DCN) architecture which consists of subsets of paths between
the sender and receiver calculated via several trusted entities
called landmarks. PathShuffle [10] presents a path mixing
protocol for Ripple network providing complete anonymity.
PathShuffle leverages existing infrastructure from Ripple [2]
to create and maintain consistent credit links with users in
the networks. Both [5] and [10] present solutions for routing
payment in a secure and privacy-preserving way in credit
networks, and neither tackle the challenge of rebalancing
depleted credit links. Our goal is to design a mechanism for
rebalancing credit links.

We leverage the concept of landmark nodes proposed in [5]
in our system to assist the requestor node in our bailout
phase. The landmark node is a well connected node such as
a bank, and hence, can potentially help the requestor node
contact several other nodes in the network for establishing
outgoing links. We use the landmarks in our system to assist
the requestor node establish outgoing links without placing
enormous trust on landmarks, unlike [5]. Roos et al [11]
used graph embedding for efficient routing with concurrent
transactions overcoming some inefficiencies in [5]. They too
do not focus on the rebalancing problem. Malavolta et al [12],
recently proposed a novel linkable ring signature scheme for
refund transactions natively in Monero [13] and extend the
same scheme into having scalable off-chain transactions by
establishing payment channels using Monero. Our system
could be deployed in such kind of payment channel network
to enable the system to be more competitive and enhance
the connectivity in such channels simultaneously achieving
rebalancing within the network.

Panwar et al. [6] proposed a DCN system where users
can perform path-based transactions that preserves sender,
receiver and value privacy but involves a significant number
of blockchain writes in the course of a normal, successful
transaction (more in the case of transaction rollbacks, re-tries,
and other edge cases). Our system also involves blockchain
writes, but in our system, a single blockchain write is done
only after the completion and execution of the entire rebal-
ancing protocol, unlike [6], which would help it scale much
better.
Rebalancing: REVIVE [14] is a payment network that al-
lows users to rebalance their channel without having to
communicate with the blockchain. Although very efficient
in rebalancing bidirectional networks (i.e., cyclic networks),
REVIVE does not present any solution for rebalancing in
a unidirectional (acyclic) credit network, which is our use-
case scenario. REVIVE has a leader elected in the network
who stays online all the time in order to facilitate rebalancing
requests. We do not place trust in any leader or centralized
entity to establish new incoming or outgoing links in the
system although we make use of landmark nodes to assist
the requestor node temporarily in our bailout step. Lightning
network [15] is a highly scalable payment channel network

that is constructed on top of Bitcoin. Lightning network does
re-balancing off-chain, but again only for cyclic networks. To
rebalance a credit link, a node does a payment in cyclic path
to itself and such payments usually comes with a fee for each
node in the circular path. In our approach, a node establishes
new incoming and outgoing credit links, without having to pay
every node in a payment path.

Ripio Credit Network (RCN) [16] is a peer-to-peer global
credit network protocol based on cosigned smart contracts and
blockchain technology. A user can join as a lender, cosigner or
borrower in the network. A cosigner will act as a go-between
a borrower and a lender in the network. In case a borrower
defaults, the cosigner works out an alternative mechanism
for managing debt collection. However, this places a great
responsibility on the cosigner, and if they are incapable of
actually enforcing debt collection for any reason, the overall
value of the network would decrease.

III. SYSTEM DESIGN

Credit networks are usually dense networks, e.g., Ripple [2],
with several incoming and outgoing links from the nodes. If a
node has depleted credit links, then, intuitively, one way for it
to rebalance its links would be to extend credit to, and borrow
from new users. This could be problematic for several reasons:
the new users might not be trusted, or at the moment when
a node’s credit links are depleted there might not be enough
new users in the system. Ultimately, whether to lend or borrow
from a user, we believe, should be a matter of choice, and no
new node should be compelled to accept credit from, or lend
credit to an existing user, simply because the existing user
needs to rebalance their credit links. With this design goal in
mind, we introduce the concept of balance transfer and bailout
where any existing node can transfer its credit links to a new
lender who offers a lower rate of interest, and an existing use
can actively look for credit lenders in the system, with some
help from a partially-online trusted bank. We now give an
overview of the two steps that comprise our system.
Balance transfer: Figure 1 shows how the balance transfer
process takes place in a credit network. Here any user can
disconnect from an existing lender and transfer credit links to
a new lender node offering a lower rate of interest.

In Figure 1 Part a) denotes a simple credit network where
A is a highly connected node. D is a poorly connected node
and would need to send requests to establish new incoming
connections. To this end, D first raises a request to add
incoming nodes, by advertising a lower rate of interest, which
will incentivize some of the nodes in the network to transfer
their credits from their existing lender to D. It is important to
note here that, in our design, every node that wants to transfer
to D would have to transfer their full credit that exists with
the current lender, and nodes are not allowed to establish an
incoming link to D with partial amount. This closely models
the real-world balance transfer mechanisms where a user either
transfers their debts (to a new lender) in the debt’s entirety,
or not at all, but cannot partially transfer debts. Figure 1 Part
b) depicts the network after two of A’s borrowers, E,G have

Fig. 1: Balance transfer in credit networks

voluntarily transferred their balances to node D, after severing
their links with A, thus D has established several incoming
links. At this point, all affected nodes will locally store their
new links and link weights. After the bailout step, the changed
network topology will be written to the blockchain.
Bailout: In the bailout process, a trusted, highly connected
party such as a bank, or a credit union temporarily lends credit
to node D, so that D can establish outgoing connections. We
refer to this trusted party as a landmark, or LM . The high-level
idea is that LM will use the fact that is is highly connected,
and temporarily connect D with several other nodes in the
network with whom LM has a direct connection. D will then
request each of these nodes if they would like to lend credit
to D, thus establishing outgoing links form D to them. Note
that any or all nodes can decline D’s request, at which point
LM will connect D with a fresh set of nodes.

Figure 2 Part a) shows the bailout phase where the link
between LM and other nodes are established after the balance
transfer state. At this point, the poorly connected node D has
two incoming links after the execution of the balance transfer
step. In order to make D an active participant in transactions
in the credit network, D also needs outgoing links. After
the balance transfer scenario, node D sends request to the
highly connected node, LM . LM provides a list of nodes,
F,A,B, I, C,H,G, that can potentially establish a outgoing
link with D, i.e., willing to lend credit to D. D will then send
request to all of these nodes for an outgoing link. If none of
the neighboring nodes are willing, LM helps D to establish
an outgoing link with any of the newer nodes that joined the
system, or will give D a fresh list of nodes. Figure 2 Part b)
shows the network after nodes A and B agree to D’s request
for outgoing links, D establishes outgoing links with A,B, at
which point LM exits the network.

IV. ADVERSARIAL MODEL

In our system, we assume that any adversary can corrupt a
single or a set of users in the network. The corrupted user(s)
can be either the requester, who raises a rebalancing request,

Fig. 2: Figure showing before and after scenario of the bailout step.

the nodes that respond to the request, or any intermediate
node. During the bailout phase, we need a trusted landmark,
LM , who is temporarily assists the requestor node. We assume
the adversary cannot corrupt the LM node. Each user i has
her own signing and verification key pair (ski, vki) and an
encryption, decryption key pair (pki, dki). Once any user is
corrupted, their corresponding signing and verification keys
are compromised, the adversary can misreport the credit link
between a user and her neighbor, not respond to any request,
respond selectively to requests and relay fraudulent balance
transfer requests to its neighbors. We assume that an adversary
cannot corrupt all users in the network, and thus may know
partial network topology, but does not know the entire net-
work. We now give the desired security/privacy properties of
a payment network that enables balance transfers and bailouts.

A. Privacy and Security properties

Link privacy: Link privacy is achieved when an adversary
only knows the value of links adjacent to her and will not
have access to other nodes’ links, even if they were part of
the balance transfer or bailout steps.
Corrupted users: We now discuss which users could possibly
get corrupted, what can a corrupted user do, and how to
mitigate the situation.
1) Corrupt balance transfer requestor node: Any user who
sends the balance transfer request and can act maliciously,
by claiming to have committed to one value (credit limit) in
the request tuple, and later reneging on their commitment.
The requestor node could also refuse to provide a low rate of
interest, as advertised.
2) Corrupt responder node: Any node that responds to the
balance transfer request can act maliciously by claiming to

have responded with a different amount than the actual amount
linked to the request id.
3) Corrupt intermediaries: Any user along the route from re-
questor to responder can be a malicious. Such adversarial users
can either drop messages with or without making an entry into
their logs, or mis-direct messages to other collaborating nodes
in the network.
Accountability: Any malicious user should not be able to
misreport her link value. In our system, each user maintains a
record of their link weights with their next-hop neighbors in a
local hash table. Each user involved in a rebalance transaction
also holds signed contracts containing the current and updated
link weights as a proof of link weight update. In case where
any user behaves maliciously, the honest peers would be able
to detect such malicious activity, also third-party arbiters can
adjudicate based on the signed contracts. An arbitrator can be
any law enforcing authority who on receiving a complaint can
enforce legal punitive action according to local laws, or revoke
nodes’ access to network. The exact nature of the remedial
action taken by arbitrators is beyond the scope of this paper.

V. ROUTING IN BALANCE TRANSFERS

In this section we discuss two different routing protocols
we use for balance transfers in credit networks: prefix em-
bedding [17] and Chord [7], and analyze and compare their
efficiency. Note that these routing algorithms are not used for
routing payments among nodes in our system, rather only for
doing a balance transfer.

A. Routing using Prefix Embedding

The first part of the balance transfer algorithm is the Find
Route phase in which the responder node finds a route from
itself to the requester. We make use of prefix embedding [17]
and VOUTE [8] to establish a route after which rebalancing
occurs. Prefix based embeddings are a part of greedy embed-
dings [17] [18]. They are, in general, created by embedding a
spanning tree into a suitable metric space. An ID is assigned
to the root node, and the tree consists of several child nodes
where each child computes the ID based on the ID of its parent
node. Prefix embedding is an adaptation of PIE embedding for
unweighted graphs. The idea is that, every node is assigned
an ID using a custom metric space such that the node ID
is equivalent to the hop distance or the depth of a spanning
tree. A child’s id is essentially the ID of the parent, an
additional coordinate equal to the index of the child. The prefix
embedding algorithm uses the following equation to find the
length of the shortest path between node u and node v, where
cpl is the common prefix length.

d(id(u), id(v)) = id(u) + id(v)− 2cpl(id(u), id(v)) (1)

B. Routing using Chord

Chord [7] is a routing algorithm built using distributed
hash tables for peer-to-peer networks, without any centralized
monitoring authority. Chord uses a 〈key, value〉 pair to map
to a specific node across the system. The keys are assigned
to nodes using Consistent Hashing [19] across the network.

Consistent hashing in Chord reduces the load in the system,
since each node in a network requires the same number of keys
and requires little movement of keys when nodes leave or join
the system, making the system dynamically compatible.
Chord assigns a 〈key, value〉 pair to each of the nodes in
the system, where the key is the identifier using SHA-1 [20]
and maps the keys to the nodes that are responsible for
them. A peer identifier is chosen by hashing the data key.
The length of the identifier is usually large to ensure the
probability of keys hashing to the same identifier is negligible.
The identifiers are arranged from 0 to 2m − 1, where m is
the digest size of the hash function used. Key k is assigned
to the first peer whose identifier is equal to or follows k
in identifier place and the first peer, clockwise from k is
called the successor peer of k, represented by successor(k).
When a peer n joins or leaves the system, the keys that
previously belonged to n, is reassigned to n′s successor. This
enables maintaining consistent hashing in the system. For
helping users join and leave the Chord network, we run a
stabilization protocol at regular intervals that updates the finger
table stored at each node. The finger table (FT) stored at each
node is a table containing the IDs of its successors. Due to
space constraints, we do not elaborate further on the working
of prefix embedding and Chord; below we briefly compare
their efficiency in terms of routing efficiency and network
restrictions.

C. Prefix Embedding vs. Chord

Routing efficiency: The main advantage using a Chord-based
routing algorithm is that the number of hops to receiver is
reduced, based on the density of the network. A peer leaving
or joining the system does not involve too many changes to the
key distribution to the system, although the successor pointers
of some peers need to be changed. In prefix embedding,
although, the users finds the shortest path, the worst case
scenario for routing efficiency would be to find a route that
traverses along the entire depth of the network.
Network Restrictions: A peer leaving or joining the system
does not involve too many changes, although the successor
pointers of some peers need to be changed. It is important to
ensure that the successor pointers are up to date otherwise,
the routing will fail in such a system. Hence there is a need
to constantly update the finger table, as and when a change
occurs. When peers fail, it is possible that a peer does not know
its new successor, and that it has no chance to learn about it.
Hence, the efficiency at which the finger tables are updated are
O(log2N) (N is the number of nodes). In prefix embedding or
VOUTE, the network need not monitor their nodes constantly
and there is no maintenance cost incurred. The users can join
and leave when they want making the network more adaptable
and does not involve handing over keys, updating peers about
leaving the system etc.

VI. CONSTRUCTION

In this section, we describe the construction of our system,
comprising of the balance transfer and bailout steps. We first

present two different ways of doing the balance transfer step:
using prefix embedding-based routing, and using Chord-based
routing. Then we present our algorithms for the bailout step.

A. Balance Transfer using Prefix Embedding

In this step, a responder node responds to a balance transfer
request BT broadcast by another node in the network. The
requester node broadcasts the amount available for accommo-
dating the incoming nodes and the rate of interest. Any user
j who wants to transfer to user i, needs to find a route to i,
and then initiate the balance transfer. This process is depicted
in Algorithm 1.

In Algorithm 1, the parties involved are the requestor node,
i, the responder node, j, and other intermediate nodes along
the length of the response path. Node i raises a balance transfer
request by broadcasting the tuple BT . The tuple consists of
the amount that i can offer as credit, interest rate intr and
a response time tp until when i can accept responses from
different nodes in the system (line 1,2). In line 3, j finds the
length of the route path | L | using prefix embedding, where
| L |=|

−→
idj | + |

−→
idi | −2∗cpl(

−→
idj ,
−→
idi). Node j finds the near-

est node on the route, and computes hash of it’s co-ordinates−→
idj in line 5. This hashed co-ordinates are used in prefix
embedding to find the next neighbor and is computed using the
common prefixes between j and next node k. Node j computes−→
idk in line 7, and creates a signature Signskj (idk) −→ σj .
Node j does a j.write(

−→
idk) and j.write(σj) in line 8 of

this algorithm. By using hashed coordinates, the address of
the users are not made public, and the actual addresses are
only available to the next-hop neighbors on the path. Then,
j sends a response respj = 〈Epki

(amtj)〉 to k. In line 11-
13, j waits to ensure that k does a k.write of next address
along the path, which ensures that the response is sent to
the hashed address that is written to the shared hash-table
between k and its neighbors. If j finds a malicious entry on
the shared hash-table, j can choose to send the response respj
through a different route. Node i receives responses respj
in line 15 of this algorithm. Node i saves all responses in
i.resp[] if the responses are received within time tp and the
amount in response amtj ≤ amt in lines 16, 17. In line 19
of this algorithm, source node src is set to k, user = j,
and dest = i. For every response that i receives, i verifies
if updated amt 6= 0, and calls MultiSig algorithm in line 21
and produces contract CtBal. The MultiSig function creates
shared, signed contracts between two adjacent nodes; we do
not give the algorithm here due to space constraints. Once
i initiates the MultiSig algorithm, node j pays the amount
lent by k in line 22. Then, node j updates her hash-table
after receiving k.resp and deletes the hash-table entry with
k. Node k deletes her entry in hash-table and they sign an
acknowledgement of the update (line 24, 25), and produces
Signsksrc(ack) −→ σacksrc . The MultiSig operation returns
{CtBal, σdest, σuser}, which is written to blockchain by i in
line 26 of this algorithm.

Algorithm 1: Balance Transfer Algorithm using Prefix
Embedding

Initial State : Node i requesting for Balance
transfer

Final Outcome: Nodes j establish a route to i for
balance transfer.

1 begin
/* Find Route Phase */

2 i raises Balance Transfer request by broadcasting
tuple BT = 〈amt,intr,tp〉

3 j the receiver computes
| L |=|

−→
idj | + |

−→
idi | −2 ∗ cpl(

−→
idj ,
−→
idi)

4 for j ∈| L | do
5 j computes hashed co-ordinates

−→
idj with

padding added
6 j finds the id of next node k, using common

prefix coordinates
7 j hashes

−→
idk and creates signature

Signskj (idk) −→ σj
8 j does j.write(idk) and j.write(σj)
9 j creates response respj = 〈Epki

(amtj)〉 and
sends to k

10 j waits for time tj , verifies if node k does
k.write

11 if k.write = “False” then
12 j finds a different route until respj reaches

i
13 end
14 end

/* Balance Transfer Phase */
15 Node i receives respj
16 if ts < tp and amtj ≤ amt then
17 Node i accepts and saves responses in i.resp[]
18 end
19 Set src = k , user = j, dest = i
20 for each user ∈ i.resp do
21 dest node calls MultiSig(dest =

i, val, user) −→ (CtBal, σdest, σuser)
22 user pays back lwsrc,user and creates

req(user,src) with lwsrc,user = 0
23 src signs ack of lwsrc,user = 0, produces

Signsksrc
(ack) −→ σacksrc

24 user verifies σacksrc
and creates σackuser

25 src and user deletes the hashtable entries on
src and user nodes respectively

26 dest node writes {CtBal, σdest, σuser} to
blockchain

27 end
28 end

B. Balance Transfer Algorithm using Chord

In this section, we discuss the balance transfer process
using Chord for routing, Algorithm 2. The first phase of this
algorithm consists of the Find Route phase, where the user j,
referred to as the responder node, responds to a BT request
raised by a requestor node i. Node i raises a request in line 2 of
this algorithm with a tuple BT = 〈amt, intr, tp, key〉, where,
amt is the amount that is extended as credit, intr is the rate of
interest offered, tp is the time period within which the response
is accepted and key which is used in finding the route to the
user in a chord network. Node i broadcasts the request BT to
all users in line 3. Node j responds to BT by first locating the
key of i, in line 4. If node i is an immediate neighbor of j from
its finger table FTj , j responds with respj = 〈Epki

(amtj)〉
in line 6. If node i is not among j’s immediate neighbors, j
finds the nearest node k from FTj and sends the response in
line 9 of this algorithm. Every intermediate node k along the
length of the path L, does a lookup(key) in their corresponding
FTk in line 11. Every node k does the steps 6 to 13 until the
respj reaches node i (requester). Node i receives all responses
accepted within time tp and stores in i.resp[] in line 16. In line
18, source node src is set to k, user = j, and dest = i. For
every response that i saved, i verifies if updated amt 6= 0, calls
the Multisig algorithm in line 20, produces contract CtBal.
Each user node in i.resp[] then updates the link weight
between user and src to 0 in line 21. The src node signs
ack of lwsrc,user = 0, produces Signsksrc

(ack) −→ σacksrc

in line 22 of this algorithm, user verifies σacksrc
and creates

σackuser in line 23, and in line 24, the nodes src and user
delete their corresponding hash table entry. The dest node
writes {CtBal, σdest, σuser} to blockchain in line 25. Once
the MultiSig operation is complete, node j repositions itself in
the Chord ring after informing the successors and predecessors
in the Chord FT in line 27 and 28. Every node from j’s
previous position to new position, update their finger table by
calling the stabilize(FT) function to update their respective
finger table entries. j also calls the Stabilize function to
update her finger table with new successors after relocating
in line 32.

C. Bailout Phase

The bailout step is the final step in the rebalancing process
and is given in Algorithm 3. Node i, in this algorithm requests
for outgoing nodes through the LM node. The main aim of
this algorithm is to connect i with multiple outgoing nodes
successfully with the help of the landmark node (LM). In
line 2 of this algorithm, node i sends a request to LM to
connect or find m nodes that would ideally, like to establish
an outgoing link with i. LM returns a list of j identities,
where j ∈ [1, 2, ..m]. LM waits for a response time tr within
which atleast one outgoing link is established and this is done
in line 4. In line 6, i calls the OutReq −→ val to j through
LM . In line 7 of this algorithm, if any j responds with a
“val”, then j calls the MultiSig(dest = j, user = i, val) −→
(CtBal, σdest, σuser) function. If all j nodes respond with a
“⊥ ”, then LM responds with a new set of j ∈ [v1, v2, v3...vm]

Algorithm 2: Balance Transfer Algorithm using Chord
Initial State : Node i requesting for Balance

transfer
Final Outcome: Nodes j establish a route to i for

balance transfer.
1 begin

/* Find Route Phase */
2 Node i raises Balance Transfer request with tuple

BT = 〈amt,intr,tp, key〉, where i ∈ N
3 i broadcasts BT to all users
4 Any j ∈ N − i does a lookup(key) in her finger

table FTj
5 if i ∈ FTj then
6 Node j responds to BT with

respj = 〈Epki
(amtj)〉 and sends to i

7 end
8 else
9 Node j finds nearest node k from FTj and

sends response respj = 〈Epki
(amtj)〉 to k

10 for each k ∈ L, where L is the length of the
path do

11 k does a lookup(key) in her finger table
FTk

12 Node k does steps 6 to 13 until respj
reaches i

13 end
/* Balance Transfer Phase */

14 Node i receives respj
15 if ts < tp and amtj ≤ amt then
16 Node i accepts and saves responses in

i.resp[]
17 end
18 Set src = k , user = j, dest = i
19 for each user ∈ i.resp do
20 dest node calls MultiSig(dest =

i, val, user) −→ (CtBal, σdest, σuser)
21 user pays back lwsrc,user and creates

req(user,src) with lwsrc,user = 0
22 src signs ack of lwsrc,user = 0, produces

Signsksrc
(ack) −→ σacksrc

23 user verifies σacksrc
and creates σackuser

24 src and user deletes the hashtable entries
on src and user nodes respectively

25 dest node writes {CtBal, σdest, σuser} to
blockchain

26 end
27 Node j informs successors, predecessors

about re-positioning
28 Successors of node j update their

corresponding FT
29 Successors call Stabilize(FT) to update their

finger tables
30 j hands over keyj to j’s successors
31 j re-positions in Chord table, re-assigns nodeID
32 j calls stabilize(FTj)
33 j updates FTj
34 end
35 end

in line 11 of this algorithm. In line 13, j calls MultiSig(dest =
j, user = i, val) −→ (CtBal, σdest, σuser). In line 16, i
writes (CtBal, σdest, σuser) to blockchain. In line 17, LM
exits the network after collecting a small fee from i, which
is computed based on the number of links established. In the
unlikely event that none of the nodes in the list sent by LM is
interested in establishing a outgoing connection from i, LM
does steps 2-13 again with a new list of j.

Algorithm 3: Bailout Algorithm
Initial State : Node i requesting for outgoing credit

links
Final Outcome: Node i establishes outgoing links

with j nodes
1 begin
2 i sends m outgoing nodes request to LM .
3 LM creates links LM −→ j, j ∈ [1, 2...m]
4 LM waits for tr for i to respond with outgoing

request
5 while tr 6= 0 do
6 i calls OutReq(i, j, Inlink, t) −→ val to j

through LM , t < tr
7 if j.resp =“val” then
8 j calls MultiSig(dest = j, user =

i, val) −→ (CtBal, σdest, σuser)
9 end

10 if j.resp = “ ⊥ ”, for all j ∈ [1, 2...m] then
11 LM responds with new nodes

〈v1, v2, v3.., vm〉
12 i calls OutReq(i, j, Inlink, t) −→ val to

j,j ∈ [v1, v2...vm] through LM , t < tr
13 j calls MultiSig(dest = j, user =

i, val) −→ (CtBal, σdest, σuser)
14 end
15 end
16 i writes (CtBal, σdest, σuser) to blockchain.
17 LM disconnects from i after collecting her fee
18 end

VII. IMPLEMENTATION AND EVALUATION

We simulated Chord-based routing using [21] as a base,
and implemented cryptographic primitives in Charm [22]. For
signatures, we used ECDSA on curve prime192v2 and used
RSA 2048 for encryption. Our experiments were run on a
desktop class computer with Intel(R) Core(TM) i3-7100 CPU
@ 3.90GHzx4 and 8GB RAM on Ubuntu-18.04 platform.
Table I shows time taken for cryptographic operations in every
phase.

In order to simulate the chord network, we have made
use of [21] simulator. The experiment was run on an intel
i-3 generation-7 desktop with 8GB of RAM. We recorded
the time taken for setting up the chord ring, broadcasting a
message and we also calculated the minimum and maximum
number of hops it takes for a source to reach its destination.

TABLE I: Time for cryptographic Operation by Phase

Operation Signature
(msec)

Verification
(msec)

Encryption
(msec)

Balance
Transfer (Prefix
Embedding)

3.355 3.7733 0.1707

Balance Transfer
(Chord)

1.9678 2.2786 -

Bailout 3.355 3.7733 -

In the “Setup” operation, we record time taken for setting
up the Chord network ring for a total of 1000 nodes. The
“Lookup” operation involves finding the route by performing
a lookup(key) from the finger table. Time taken for response
phase is the total time taken for doing a lookup(key) and
respond to the broadcast message. “Re-assign and Stabilize”
is the final operation which involves updating finger tables for
all the successors and predecessors of the re-positioned node,
after the balance transfer operation has been carried out. The
time taken for setup varies linearly with the number of users
added to the Chord network.

TABLE II: Balance Transfer in Chord - Time recorded for operations

Operation Time taken
Setup (1000 users) 23.0650 sec
Broadcast BT 13.913 sec
Lookup and Response 20.7730 sec
Re-assign and Stabilize 10.6676 sec

We give the timings for balance transfer using prefix em-
bedding in Table III. We used the GTNA package [23]
to implement balance transfer using Prefix Embedding. The
time taken for “Setup” which involves, creating a network
of 1000 users, assigning links and link weights and creating
embedding co-ordinates is given in table III. The “Broadcast
BT” represents the time taken for a requester sending out a BT
(Balance Transfer) request tuple, which contains the position
and amount for balance transfer. “FindRoute and Respond”
operation is the process of finding route between a requester
and responder, and also includes the time taken for sending
out the response which is the encrypted value of the amount
that any user is willing to balance transfer with the requester.
This also includes the time taken for the user to establish an
edge with the requester (create an edge between two nodes in
the graph). The setup time increases linearly with increase in
number of users, as expected. For “Find Route and Response”,
the time taken to route from the first node to the farthest
node in the graph is given here, since that would be the
longest routing path, a node would encounter. Since the graph
generated by GTNA is unstructured, and randomly generated
each time, we give the average value of 100 runs for 1000
users in Table III.

Table IV shows the time for bailout operation after per-
forming balance transfer. We recorded time for setting up the
network from 1000 to 10000 users. Here the setup refers to
establishing connections from landmark to all the other nodes
in the network. For 1000 users, the setup time for Bailout

TABLE III: Balance Transfer using Prefix embedding - Time recorded
for operations

Operation Time taken
Setup (1000 users) 26.64 msec
Broadcast BT 0.144 msec
FindRoute 10.340 msec
FindRoute and Response 25.38 msec

Fig. 3: Graph showing time taken for balance transfer using Prefix
embedding. The time for all the operations increase with the number
of users except Broadcast operation

is 0.0336 seconds and the value increases with increase in
number of users.. ’Create Edges’ involves establishing edge
and edge weights between the requester and other nodes who
are willing to extend credits. The time taken for FindRoute is
the total time taken for all the 10 nodes selected by landmark
node to route to requester node.

TABLE IV: Bailout - Time recorded for operations

Number of Users Setup (time
in msec)

FindRoute
(time in
msec)

Create
Edges (time
in msec)

1000 33.672 0.072495 3.63636
2000 58.514 0.075099 7.1581
4000 123.363636 0.076168 16
8000 269.089109 0.1378 42.297
10000 369.6347 0.2779 52.7722

Figure 3 shows the time taken for operations in balance
transfer in prefix embedding. We obtain the values for 1000,
2000, 4000, 8000, 10000 users by taking a average on 100
values for each operations. We plotted the time taken for
operation against number of users and the time for all the
operations (except broadcast) with increasing number of users.
The time taken for broadcast will not vary or increase with
the number of users since, this operation involves creating a
balance transfer tuple and sending it out into the network,
regardless of the number of users in the network.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a new technique for
rebalancing in credit networks that would help a poorly
connected node rebalance its links, and become an active

participant in the network, thus making the network robust,
more competitive, and increasing the overall throughput of
the network. Our method involves a poorly connected node
creating incoming links using a process called balance transfer
and creating outgoing links using a process called bailout. We
present the high-level ideas and and prototype them in this
paper; as a part of future work, we envision to implement the
idea on a real world credit network such as Ripple [2].

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[2] F. Armknecht, G. O. Karame, A. Mandal, F. Youssef, and E. Zenner,

“Ripple: Overview and outlook,” in International Conference on Trust
and Trustworthy Computing. Springer, 2015, pp. 163–180.

[3] S. Nakamoto, “Stellar,” 2008.
[4] P. Prihodko, S. Zhigulin, M. Sahno, A. Ostrovskiy, and O. Osuntokun,

“Flare: An approach to routing in lightning network,” White Paper, 2016.
[5] G. Malavolta, P. Moreno-Sanchez, A. Kate, and M. Maffei, “Silentwhis-

pers: Enforcing security and privacy in decentralized credit networks.”
in NDSS, 2017.

[6] G. Panwar, S. Misra, and R. Vishwanathan, “Blanc: Blockchain-based
anonymous and decentralized credit networks,” in In Ninth ACM Con-
ference on Data and Application Security and Privacy (CODASPY19),
2019.

[7] I. Stoica, R. T. Morris, D. Liben-Nowell, D. R. Karger, M. F.
Kaashoek, F. Dabek, and H. Balakrishnan, “Chord: a scalable
peer-to-peer lookup protocol for internet applications,” IEEE/ACM
Trans. Netw., vol. 11, no. 1, pp. 17–32, 2003. [Online]. Available:
https://doi.org/10.1109/TNET.2002.808407

[8] S. Roos, M. Beck, and T. Strufe, “Voute-virtual overlays using tree
embeddings,” 2016.

[9] G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and S. Ravi,
“Concurrency and privacy with payment-channel networks,” in Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2017, pp. 455–471.

[10] P. Moreno-Sanchez, T. Ruffing, and A. Kate, “Pathshuffle: Credit
mixing and anonymous payments for ripple,” Proceedings on Privacy
Enhancing Technologies, vol. 2017, no. 3, pp. 110–129, 2017.

[11] S. Roos, P. Moreno-Sanchez, A. Kate, and I. Goldberg, “Settling
payments fast and private: Efficient decentralized routing for path-based
transactions,” arXiv preprint arXiv:1709.05748, 2017.

[12] P. Moreno-Sanchez, RandomRun, D. V. Le, S. Noether, B. Goodell, and
A. Kate, “DLSAG: non-interactive refund transactions for interoperable
payment channels in monero,” IACR Cryptology ePrint Archive, vol.
2019, p. 595, 2019. [Online]. Available: https://eprint.iacr.org/2019/595

[13] S. Noether and A. Mackenzie, “Monero research lab.,” Ring Confidential
Transactions. Ledger, vol. 1, pp. 1–18, 2016.

[14] R. Khalil and A. Gervais, “Revive: Rebalancing off-blockchain payment
networks,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2017, pp. 439–453.

[15] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-chain
instant payments,” 2016.

[16] “https://ripiocredit.network/.”
[17] S. Roos, L. Wang, T. Strufe, and J. Kangasharju, “Enhancing compact

routing in CCN with prefix embedding and topology-aware hashing,”
in Proceedings of the 9th ACM Workshop on Mobility in the Evolving
Internet Architecture, MobiArch 2014, Maui, HI, USA, September 11,
2014, R. L. Aguiar and K. Guo, Eds. ACM, 2014, pp. 49–54.
[Online]. Available: https://doi.org/10.1145/2645892.2645900

[18] T. Leighton and A. Moitra, “Some results on greedy embeddings
in metric spaces,” Discrete & Computational Geometry, vol. 44,
no. 3, pp. 686–705, 2010. [Online]. Available: https://doi.org/10.1007/
s00454-009-9227-6

[19] A. Dury, “Peer-to-peer computing in distributed hash table models using
a consistent hashing extension for access-intensive keys,” in Agents
and Peer-to-Peer Computing, Third International Workshop, AP2PC,
2004, New York, NY, USA, July 19, 2004, Revised and Invited Papers,
ser. Lecture Notes in Computer Science, G. Moro, S. Bergamaschi, and
K. Aberer, Eds., vol. 3601. Springer, 2004, pp. 185–192. [Online].
Available: https://doi.org/10.1007/11574781 17

[20] F. P. NIST, “180-1: Secure hash standard,” 1995.

[21] I. Kazmi and S. Bukhari, “Peersim: An efficient & scalable testbed for
heterogeneous cluster-based p2p network protocols,” in Proc. of the 2011
UKSim International conference on modeling and simulation, 2011, pp.
420–425.

[22] J. A. Akinyele, C. Garman, I. Miers, M. W. Pagano, M. Rushanan,
M. Green, and A. D. Rubin, “Charm: a framework for rapidly proto-
typing cryptosystems,” J. Cryptographic Engineering, vol. 3, no. 2, pp.
111–128, 2013.

[23] B. Schiller and T. Strufe, “GTNA 2.0 - a framework for rapid prototyping
and evaluation of routing algorithms,” in 2013 Summer Simulation
Multiconference, SummerSim ’13, Toronto, Canada - July 07 - 10, 2013,
2013, p. 23.

https://doi.org/10.1109/TNET.2002.808407
https://eprint.iacr.org/2019/595
https://doi.org/10.1145/2645892.2645900
https://doi.org/10.1007/s00454-009-9227-6
https://doi.org/10.1007/s00454-009-9227-6
https://doi.org/10.1007/11574781_17

	I Introduction
	II Related Work
	III System Design
	IV Adversarial Model
	IV-A Privacy and Security properties

	V Routing in Balance Transfers
	V-A Routing using Prefix Embedding
	V-B Routing using Chord
	V-C Prefix Embedding vs. Chord

	VI Construction
	VI-A Balance Transfer using Prefix Embedding
	VI-B Balance Transfer Algorithm using Chord
	VI-C Bailout Phase

	VII Implementation and Evaluation
	VIII Conclusion and future work
	References

