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ABSTRACT

Edge Computing is a new computing paradigm where applications
operate at the network edge, providing low-latency services with
augmented user and data privacy. A desirable goal for edge comput-
ing is pervasiveness, that is, enabling any capable and authorized
entity at the edge to provide desired edge services—pervasive edge
computing (PEC). However, efficient access control of users receiv-
ing services and edge servers handling user data, without sacrificing
performance is a challenge. Current solutions, based on “always-on”
authentication servers in the cloud, negate the latency benefits of
services at the edge and also do not preserve user and data pri-
vacy. In this paper, we present APECS, an advanced access control
framework for PEC, which allows legitimate users to utilize any
available edge services without need for communication beyond
the network edge. The APECS framework leverages multi-authority
attribute-based encryption to create a federated authority, which
delegates the authentication and authorization tasks to semi-trusted
edge servers, thus eliminating the need for an “always-on” authen-
tication server in the cloud. Additionally, APECS prevents access
to encrypted content by unauthorized edge servers. We analyze
and prove the security of APECS in the Universal Composability
framework and provide experimental results on the GENI testbed
to demonstrate the scalability and effectiveness of APECS.
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1 INTRODUCTION

The number of wireless devices and connections are growing rapidly,
the major drivers being the increasing number of smartphones
and machine to machine communications from smart meters, au-
tonomous vehicles, video cameras, and more [5]. As an example,
real-time video analytics data from Internet of Things (IoT) devices
such as surveillance cameras [4], estimated to be over 1 billion by
the end of 2021!, supports several practical, useful applications
such as traffic control, autonomous driving, providing cognitive
assistance to users [25, 31], and more. The video feed data generated
by cameras needs to be processed quickly and in proximity to the
user, which precludes transferring the data to the Cloud for pro-
cessing. This need is particularly accentuated for latency-sensitive
applications such as autonomous driving.

To address this challenge, various edge computing ecosystems
have been proposed, including cloudlets, fog computing, and Multi-
Access Edge Computing [21] with the premise of deploying pow-
erful servers and gateways to serve users in regions with high
computation demand. Recently, the notion of Pervasive Edge Com-
puting (PEC) [23] has emerged, aiming to create an ecosystem in
which the computation capability of every peer device at the edge,
e.g., smartphones, tablets, and vehicles, can be brought to bear to
serve users’ computation needs.

Motivation: Current access control enforcement solutions designed
for cloud computing cannot be trivially ported to the distributed,
multi-stakeholder PEC environment. In a PEC ecosystem, relying
on an always-online cloud service for access control is undesirable
for several reasons, such as high latency due to several rounds of di-
rect client-server communication, the Cloud might become a single
point of failure, and cloud server(s) going rogue and undermining
user privacy and/or user data confidentiality. Furthermore, in the

!https://technology.informa.com/607069/video-surveillance-installed-base-report-
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highly dynamic PEC environment with quick nodes turnover, lack
of mutual authentication between the user and edge servers, and de-
layed revocation of rogue servers (particularly with high turnover
rates) is an added challenge. This necessitates re-envisioning access
control mechanisms without involving the Cloud.

Use Cases: We consider two application use cases to motivate the
need for distributed and fine-grained access control for secure ex-
ecution of edge services. The extensive deployment of security,
traffic, and dash cameras motivated crowdsensing applications,
including a vehicle-tracking AMBER Alert system [30, 31] and a
parking spot locating service for dense urban areas [10]. These
applications collect user generated video feed for low latency pro-
cessing by the authorized edge servers, available in the data sources
locale to identify occupied parking spots or vehicles using their li-
cense plates. Such data sharing applications, however, raise privacy
and security concerns over how user generated data is collected,
processed, and utilized. For instance, in the AMBER Alert example,
parents may accept sharing their children’s information with the
authorities but not the larger public community, or a driver in the
region of interest may be willing to share the video feed of her on-
dash camera only with the police department. In another scenario,
the police department might require the location (or the annotated
image) of the alleged kidnapper’s vehicle to only be shared with
active duty officers in order to mitigate the risk of vigilantes.

The second use case is post disaster rescue, in which first re-
sponders and civilian volunteers spontaneously form rescue teams
to collect information such as the video feed from body cameras
and updates from cameras/sensors on disaster victims devices. The
data will be opportunistically shared with the available and au-
thorized edge servers (e.g., vehicles, drones, or base stations) for
processing and critical decision-making-often in this case there
is no centralized cloud available. In this use case, only relevant
information should be shared with each participant. For instance, a
civilian volunteer should not be able to access the private health
information of a victim while a paramedic at the same site should
be able to obtain such information. These use cases elucidate the
demand for distributed and fine-grained access control, enabling
users and the dynamic edge infrastructure to mutually authenti-
cate and authorize each other without relying on an always online
authentication server, which will often be difficult to provision.
Unique Constraints in the PEC Environment: The PEC ecosys-
tem is highly dynamic and is composed of mobile devices, e.g., cars,
smartphones, and PEC servers with high turnover. Providing ser-
vices in such a fast-changing, evolving environment is a challenge.

This will be further compounded by the low-latency and high
bandwidth requirements of the next generation services, e.g., au-
tonomous driving and industrial IoT, where significant amounts of
data need to be transferred to a server quickly, processed rapidly,
and delivered back to a customer, sometimes in mere milliseconds.
This necessitates the need for quick authentication and rapid inter-
changes between the consumer and the servers before the connec-
tion is lost—potentially forever. Further, the personal nature of the
user data, such as images, puts stringent privacy requirements on
it. Providing personal data to an unauthorized or unauthenticated
server for service becomes a high stakes operation and the impact
of data falling in the wrong hands (especially if authentication is
not rigorous) could be significant. The high dynamicity may not

adequately equip the consumers to verify the servers’ access rights
and authenticity in the short time window available for interaction.
These constraints are major motivating challenges.

Overview: We address these motivating challenges by proposing
APECS-a distributed, multi-authority access control framework
for dynamic PEC ecosystems. APECS enables the users and PEC
servers to mutually authenticate and authorize each other via a
federated access control model without relying on a centralized root
of trust. Utilizing multiple trust authorities regulates access to users’
personal data and prevents a malicious authority from breaching
users’ privacy by unilaterally accessing the user’s personal data. To
ensure that users can provide access right proofs and this access can
be verified at the PEC server directly, APECS employs a token-based
authorization scheme (similar to OAuth), which includes a novel
authentication method for verifying token ownership-a feature
not provided in OAuth. In addition, APECS removes the “always-
on” authentication server requirement and allows asynchronous
authentication of PEC servers. Thus, in the highly dynamic and
intermittent edge environment, APECS allows the users to securely
submit their data for processing, without edge server discovery and
with implicit authenticity verification; ensuring that only available
and authorized PEC servers can decipher the data for processing.
Contributions: In summary, the contributions of this paper in-
clude: a) Design of APECS, a distributed mutual access control en-
forcement framework that operates at the edge after bootstrapping
by the Cloud. APECS uses multi-authority attribute based encryp-
tion [3], is agnostic of the underlying network architecture, thus is
portable to future internet architectures. b) Design of APECS PKC
(public key cryptosystem), an alternative APECS implementation
using traditional public key cryptosystems. APECS PKC is suitable
for static networks, in which PEC servers’ availability is known to
the users prior to service requests, allowing the users to establish
secure channels to the desired PEC server. ¢) APECS has an effi-
cient and quick revocation mechanism for edge entities that does
not need immediate communication with the Cloud, and requires
minimal (not system-wide) re-keying of the remaining entities and
data re-encryption in the system. d) Rigorous security analysis of
APECS using the Universal Composability framework and discus-
sion of enhancements using traditional public key cryptosystems.
e) APECS prototype implementation in the GENI testbed [1] and
performance evaluation with the existing set-up and an IP-based
potential design set-up.

The paper is organized as follows. We discuss the related work in
Section 2. Section 3 includes our models and assumptions. Section 4
presents APECS building blocks and overview with detailed design
in Section 5. Section 6 includes the security analysis of APECS.
We discuss the reference implementation of APECS along with its
evaluation in Section 7 and draw our conclusion in Section 8.

2 RELATED WORK

The majority of access control for services today happens far from
the edge, either on the Cloud or the Content Provider premises.
Recently, a few initiatives have proposed edge computing as a plat-
form for providing security services at the edge [6, 12, 18]. However,
access control enforcement at the network’s edge has received little
attention. Despite some similarities, edge-centric access control



enforcement requires additional considerations due to its decen-
tralized, dynamic, and multi-stakeholder nature, which limits the
effectiveness of conventional cloud-based solutions. We review the
access control literature in both Cloud and edge ecosystems.

In the literature, attribute-based access control (ABAC), in which
policies are used for granting access rights, has been widely stud-
ied [7, 8, 12, 19, 20, 26, 27, 33]. ABAC schemes can generically be
realized by attribute-based encryption (ABE) [8, 20, 26], which have
proven to be very beneficial in cloud architectures [26] for provid-
ing flexible and fine-grained data sharing frameworks. However,
the use of ABAC for user authentication and authorization can
be costly compared to capability based access control [7, 8, 12—
14, 19, 20, 27, 33]. To alleviate this challenge, approaches have
been proposed for reducing ABE’s computation cost [7, 12, 33].
Xue et al. utilized hash-chains to limit the number of ABE opera-
tions in an information-centric setting [22, 27, 28]. The user’s initial
communication is authenticated using a single ABE operation while
the follow-up requests are authorized by a series of bootstrapped
chained hashes. Xue et al. proposed proof-of-attribute challenges to
prevent Economic Denials of Service (EDoS) [26], in which the re-
ceiver proves the possession of the attributes by solving a challenge
encrypted with those attributes prior to communication.

Capability-based access control (CapBAC) is an alternative ac-
cess control model to ABAC systems. In CapBAC, unforgeable
access tokens are given to subjects to represent subjects’ access
rights—enabling a more distributed and computationally cheap au-
thentication and authorization [11, 24, 33]. In the majority of the
token-based CapBAC implementations, such as OAuth [11] and
Heracles [33], the cloud back-end is assumed to be the sole trusted
authority, responsible for token generation and distribution. In
OAuth, the client in the possession of the access token (referred to
as “bearer token”) can authorize themselves to the resource server
by including the access token in the requests. However, the OAuth’s
bearer token does not include user specific information, allowing
an intercepted token to be used by the attacker. Thus, undermining
its effectiveness. Heracles [33] extended OAuth via a hybrid solu-
tion, in which both bulk operations and single target operations
were accomplished via ID-based tokens and attribute based tokens,
respectively. Despite Heracles’ capability in promoting fine-grained
access control, it remains vulnerable if an unfaithful subject shares
its token. To remedy, FairAccess [19] proposed the utilization of a
shared private blockchain at the edge to provide the accurate ledger
of access tokens, their rights, and their possession.

Despite some initiatives for IoT device access control at the edge,
no effort was able to build a holistic mutual access control system
for computation offloading to the edge. We addressed this gap by
building a distributed framework for mutual authentication and
authorization of users and PEC servers. APECS provides a scalable
and efficient access control enforcement in highly dynamic PEC en-
vironments, and enables federation with access control authorities
for quick access revocation without system-wide re-keying.

3 MODELS AND ASSUMPTIONS
3.1 System Model

Our system model comprises the computing environment, service
consumers, and service providers. The computing environment
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Figure 1: APECS system model including the parties involved in
secure delivery of edge services.

includes Cloud providers and the PEC ecosystem [23]. The PEC
ecosystem is itself composed of pre-deployed components such as
the multi-access edge computing (MEC) infrastructure [21] and
the users’ devices that are joining the computing resource pool for
executing requested services. In the rest of the paper, we refer to
these users’ devices as PEC servers. A service can either be static,
e.g., static videos or web content, or dynamic, e.g., annotation of
videos or images. Dynamic services may require an input data from
the user (e.g., a user’s image/video for performing annotation) or
other service providers (e.g., the police department requesting the
vehicle-tracking AMBER Alert information from other vehicles).
A service provider owns the requested static/dynamic service.
We assume that the service providers are well-known. A service
consumer is typically a user who requests a service. Given the
fluid and highly dynamic nature of PEC, a user can have multiple
roles at the same or different times, simultaneously acting as a ser-
vice provider and consumer. In APECS, we employ multi-authority
attribute-based encryption (MABE) [3] with service providers des-
ignated as one set of attribute-issuing authorities (AIAs), and base
stations (part of internet service providers) being the second set of
AlTAs. Alternatively, MEC servers can act as base stations for the
second AIA category.
System Entities Interactions. As shown in Step (1) of Figure 1,
each service provider initiates its AIA, hosted as a virtual machine
on the Cloud. The AIAs onboard PEC servers and provide them
with attributes and secret keys for their registered services (Step (2)).
Similarly, each base station initiates its AIA to onboard its local PEC
servers (Step (3))%. At this stage, the PEC nodes are fully onboarded
by both AIAs. A user, interested in a service, registers with the
service provider and obtains an authentication/authorization token
(Step (4)). To request a service, the user encrypts her data using the
expected attributes of the service provider and her local base station,
and sends the encrypted data (and her token) into the network via
the base station (Step (5)). The base station relays the user’s request
to the existing PEC servers (Step (6)) for enforcing access control

2 An ISP may run a system-wide AIA rather than one per base station; but that is an
implementation decision, which we do not discuss.



and service execution. The PEC servers return the result of the
service to the base station, which forwards it to the user (Step (7)).

3.2 Security and Computational Assumptions

We assume that all entities are capable of performing symmetric and
asymmetric key cryptography, and have their clocks loosely syn-
chronized. We assume the existence of a trusted public key infras-
tructure (PKI) by which all entities obtain certificates corresponding
to their cryptographic key pairs from well-known authorities (e.g.,
Verisign). For instance, a provider p obtains its certificate Cert,
and a user u obtains their certificate Cert,. We further assume that
symmetric and asymmetric key operations and cryptosystems are
secure. We assume the cloud providers and base stations are honest
but curious participants in that they do not deviate from the proto-
cols but try to learn information about the system. It is a common
assumption when considering these entities as part of the infrastruc-
ture. We further assume attackers are Probabilistic Polynomial-time
(PPT) adversaries and are computationally bounded.

Our scheme relies on assumptions based on the decisional Diffie
Hellman (DDH) problem, the decisional Bilinear Diffie Hellman
(BDH) problem, the k-decisional Diffie Hellman (k-DDH) problem,
and the external Diffie Hellman (XDH) problem [3]. Please refer to
Appendix 10 for formal definitions of these assumptions.

3.3 Threat Model

We consider the following six threats from the service consumers,
the computing ecosystem (including PEC servers and the cloud
computing providers), and malicious third parties, which may play
the role of an edge server or a service consumer. An outsider may
try to unlawfully use a service (a) without registering and obtaining
a valid token for the service, or (b) by using a forged token (not gen-
erated by the service provider or containing invalid information). A
legitimate user (service consumer) may try to (c) request a service
with an expired token or a token with insufficient authorization
level (similarly reusing a token from one service provider to give
access to services of other providers), or (d) share their token with
an unauthorized user to allow unauthorized service access.

An unauthorized PEC server may try (e) to mount a spoofing
attack by impersonating an authorized server to hijack or obtain a
user’s data. An authorized but malicious PEC server may try to (f)
collude with an unauthorized user to maliciously provide a service.
This includes offering a static service (i.e., content) or the execution
of a dynamic service to an unauthorized user. We do not consider
the situation where a malicious PEC server returns incorrect re-
sults, possibly for avoiding resource intensive computation. For
addressing this, techniques for verifiable computing [32] can be
used in conjunction with APECS.

4 APECS BLOCKS AND OVERVIEW

In this section, we give an overview of APECS and its building
blocks. Table 1 presents the notations used in explaining APECS.
4.1 User Authentication and Authorization

In APECS, a user u € U interested in using a service provider’s
p € P services (e.g., Instagram) has to register herself with p to
obtain a customized and time-bounded token. The token allows
u to authenticate herself to the corresponding PEC server e € E

Table 1: Notations Used

Notation Description

P Set of service providers.

U Set of clients.

C Access Control Cloud.

E Set of PEC servers.

B Set of base stations.

Tpu User u’s token 7 from service provider p.

1D, Identifier of entity/service x.

Certx Entity x certificate containing verification key VK.
Ly Authorization level of entity/data x.

Texp Token’s expiry time.

Te Current time.

Mk Public key of MABE system for ABE operations.
[Ae] List of MABE decryption keys possessed by e.
Rac Service provider p’s registration request to C.
SKx Signing key of entity x.

VKx Signature verification key of entity x.

Ox Signature on data x.

revocTable List of revoked users’ tokens stored at each e € E.
serverTable | List of PEC servers maintained by each AIA.
userTable List of users and tokens maintained by each p € P.

providing service for p, when requesting the service, which can be
either static or dynamic. We note that p has to sign all the issued
tokens for integrity verification. Below, we elaborate on the token’s
structure, its components, and the rationale behind its components.

DEFINITION 4.1. Authentication Token

Token Tpy, represents the unique JSON Web Token (JWT) that service
provider p generates for user u. The JWT format provides greater
functionality than traditional bearer tokens, such as those used in
OAuth. Tpy, is a unique token that includes the service provider’s
unique identifier, ID,, the service identifier, IDs, (or a list of service
identifiers), the user’s certificate, Certy, the user’s authorization level,
Ly, (or a list of authorization levels), and its expiry time, Texp: Tpy =
<IDpv [IDs], Certy, [Lu], Texp)-

The service provider’s identifier, IDp, in Tpy enables the access
control enforcers, i.e., PEC servers, to fetch p’s certificate for token
signature verification, thus ensuring token’s integrity and prove-
nance. We note that lack of token integrity and provenance verification
is one of the major shortcomings of OAuth, which we address. The
service identifier, IDg, indicates the name of service(s) that u is
authorized to use. By including IDs in 75y, the PEC servers prevent
u’s unauthorized access to other services p provides that requires
independent membership per service. For each service (static or
dynamic), L,, indicates u’s authorization level, i.e., Bronze, Silver,
or Gold, to be matched against the required authorization level
of the requested service. Token Tpu also includes u’s certificate,
Cert,, which enables the PEC servers to verify the authenticity of
u’s signed request, thus preventing unauthorized users from using
a hijacked token. Finally, 75, includes an expiry time as a system
parameter. At the conclusion of Texp, u can request to renew her
token, which is granted at the service provider’s discretion.

4.2 Asynchronous Server Authentication

APECS is designed for a dynamic edge computing ecosystem where
edge servers can leave and join at will. In such ecosystems, the tra-
ditional authentication mechanisms, in which the user has to first



discover the available PEC servers, create a secure connection, and
authenticate the selected server would not scale. Thus, APECS de-
vises an asynchronous PEC server authentication framework using
the MABE scheme proposed in [3]. In APECS asynchronous PEC
server authentication framework, users encrypt their data (needed
for service execution) using the MABE scheme, allowing any PEC
server with the requisite set of attributes obtained from multiple
attribute-issuing authorities to decrypt the data and execute the
requested service without the need for server discovery, secure
channel establishment, or synchronous interactions between the
user and PEC servers. To obtain pertinent credentials (e.g., secret
keys and attributes), PEC servers should be associated with the cor-
responding service providers and a base station. Before presenting
the MABE scheme [3], we note that broadcast encryption (BE) is an-
other relevant technique for asynchronous authentication [16, 17].
Despite its simplicity, BE is not suitable for the PEC ecosystem
since it does not work well for several one-to-one (consumer-edge
server) communications [9], and falls short in performing dynamic
revocation. Furthermore, a federated BE approach does not exist in
the literature.

DEFINITION 4.2. Multi-authority Attribute-Based Encryp-
tion (MABE) [3]
A key policy ABE scheme (KPABE) with n attribute-issuing authori-
ties (AIAs) consists of the following four algorithms. All algorithms
except decryption are randomized.
1) (sysparam, (apky , asky), . . ., (apkn, asky)) — ABE.Setup(lA, n):
This algorithm runs once in the beginning to setup the system param-
eters and the AIAs. It takes in a security parameter, A, and number of
AlAs n, as input, and outputs the system parameters, sysparam, and
each AIA’s public/private key pairs. The sysparam includes bilinear
group information, and the threshold value dj. that denotes the min-
imum number of attributes each user needs to possess from an AIA
kik € [1...n]. Set public key, Mpy = (sysparam, apki ... apknp).
2) SKy «— ABE.KeyGen(M,y., asky, id, Ay): This algorithm is run
by AIA k, and takes as input My, k’s secret key, asky., a userid, id,
and a set of attributes, A, s.t., |Ar| > d. It outputs the user’s secret
keys SK.
3)C « ABE.Encrypt(Mpk, (A1,...,Ap), m): This algorithm takes
in My, a subset of at least dy. attributes from an AIAk;k € [1...n],
message m, and outputs ciphertext C.
4){m, L} < ABE.Decrypt(My, (SK1, ..., SKp), C): This algorithm
takes in the public key Mpy. and a set of secret keys from each AIA
sufficient to decrypt the ciphertext C. If successful it outputs the plain-
text message m, else outputs L. Decryption is successful whenever
the overlap between the set of secret keys and the set of attributes
associated with the ciphertext is above a threshold.

4.3 APECS Overview

APECS consists of seven protocols that describe the interactions
between the cloud provider, C, service providers, P, PEC servers,
E, and users, U. APECS consists of two phases: (i) distributed user
authentication and (ii) asynchronous server authentication and
service execution.

In the first phase, PEC servers authenticate and authorize users’
requests by validating the users’ requests and corresponding tokens.
For token verification, PEC servers use service providers’ identifiers

(included in the tokens) to fetch the corresponding certificates and
validate tokens’ signatures; preventing token forgery. For users’
requests verification, PEC servers use the users’ certificates included
in the corresponding tokens to verify requests’ signatures. Finally,
the PEC servers use the other components of the tokens to authorize
users for requested services. Token-based user authentication and
authorization in APECS enables mobile users to utilize edge services
while moving across base stations without the need for obtaining
new tokens or updating cryptographic materials.

In the second phase, upon successful user authentication, PEC
servers should fulfill service requests on a service provider’s behalf.
In order to protect the user’s privacy, the user encrypts the data
needed for her service execution using the set of attributes (from
both AIAs) pertinent to the requested service. Following the MABE
scheme mentioned in Definition 4.2, PEC servers use their attribute
sets for data decryption. A successful MABE decryption process
proves the authenticity of the PEC server for service execution.

APECS enables efficient revocation of users and PEC servers.
For user revocation, service providers share their user revocation
lists (revoked tokens) with the PEC servers. For PEC server revo-
cation, instead of a system-wide re-keying of un-revoked users,
the provider notifies the base station that is associated with the
PEC server to revoke it. This localizes the PEC server revocation to
the base station, which invariably has a much smaller number of
connected PEC servers.

5 APECS DESIGN

This section includes APECS architectural design and details of
protocols for system setup and registration, users service requests,
PEC servers’ service response (including mutual authentication),
and user and PEC server revocation. We also discuss APECS PKC-an
APECS construct using the traditional public key cryptosystem for
scenarios where users and PEC servers can synchronously interact.

5.1 System Setup and Registration

5.1.1 Bootstrapping of AlAs and Provider Registration (Protocol 1).
In APECS, service providers use the Cloud as a conduit for their
interactions with the PEC ecosystem due to the Cloud’s centrality.
Thus, to delegate access control enforcement to PEC servers, the
service provider (p € P) must register with the Cloud (C) as the
hosting environment for running its AIA and bootstrapping the
PEC servers at the edge. Initially, as illustrated in Protocol 1, the
providers and base stations run the system setup for the MABE
protocol as defined in Definition 4.2 (Line 1). Provider registration
begins with p forming and sending a request (R 4¢) to C, containing
p’s certificate (Certy), followed by a challenge-response commu-
nication to prove the ownership of Cert, (Line 2). We note that
Certy contains the verification key of entity x (VK), which will
be used for signature verification. Upon receipt of R 4¢ from p, C
registers p by generating a profile and a provider identifier ID,,
(Line 3), using either the unique subject identifier value stored in
Certy, or its digest, and returns it to p (Line 4). This allows p to use
ID;, when generating future access tokens and aids in confirming
the validity of the tokens at the PEC servers.

5.1.2  Edge Server Registration (Protocol 2). As shown in Protocol 2,
a PEC server (e € E) initiates its registration process by securely



Protocol 1 System Setup and Provider Registration

Protocol 3 User Registration

{At AIAs (Provider & Base station)}
1: (Mpk = (sysparam, apki, ..., apkn), aski, ..., askn) —
ABE.Setup(lA, n)
{At Provider}
2: send Rac = {Certp} to C
{At Cloud}

3: 1Dy « registerProvider(Certy);
4: return ID), to p;

sending it’s certificate, (Cert,), and the list of identifiers, ([ID;s]),
of services it would like to provide to two AIAs-both p’s AIA,
hosted on the Cloud, and the base station that e is connected to
(Line 1). Each ATA executes the MABE key generation algorithm
(following Definition 4.2) to generate a list of secret keys [A¢] for
e, corresponding to the services [ID;] offered by e (Line 3). The
AIJA stores the generated keys in a serverTable and securely sends
them to e (Lines 4-5), allowing it to decrypt any requests that it may
receive from users, so long as e’s attributes match the attributes in
the user’s request.

5.1.3  User Registration (Protocol 3). A new service consumer (u €
U), interested in p’s service(s), has to register with p to obtain a cus-
tomized token for future service utilization. As shown in Protocol 3,
user registration begins with u sending a request to p containing
her certificate (Cert,) and general user data (user_data) that are
often used for creating user accounts, such as credentials, e-mail,
and birth-date (Line 1). The user_data also contains any number
of values necessary for the provider to complete registration of the
user. Additionally, this metadata contains information related to the
requested service, such as service tiers (e.g., bronze, silver, and gold)
or service types (e.g., image annotation, gaming, or streaming).
Provider p verifies u’s request and if the registration request is
valid (Line 2), it retrieves a list of service identifiers ([IDs]) cor-
responding to the user_data. It should be noted that the [IDs]
corresponds to services offered by p. With the user’s information,
p generates a customized access token (7py) for u containing p’s
identifier (IDp), list of permitted service identifiers ([IDs]), the
user’s certificate (Certy), u’s authorization levels for the permitted
services ([Ly]), and an expiry time Texp (Line 3). To protect the
token’s integrity and for provenance, p signs the token (Line 4).
The provider further obtains M, the MABE’s master public key
(Line 5), which is needed in the MABE encryption process. Upon
storing u’s information and her token in the userTable, p securely
sends a tuple, including 75y, its signature (0'7;7 .)> and Mpy to u
(Lines 6-7). However, if p doesn’t accept u’s registration request, it
returns a negative acknowledgement to u (Lines 8-9). The presence
Protocol 2 Edge Server Registration
{At Edge Server}
1: send {[IDs], Cert.} to AlAs (provider hosted on C and the
corresponding base station)
{At Provider & Base station}

2 [Ae] « ABE.KeyGen(M,, aske, ide, [IDs])

3. store {e, [Ae]} in serverTable

4: return {e, [Ae]} to e

{At User}

1: send {user_data, Cert, } to p

{At Provider}
2. if p accepts u’s registration request then
3. Set Tpy = (IDp, [IDs], Certy, [Ly], Texp)
€ o7, — SignSKP(‘7;,u)
5. Mpp — retrieveABECredentials()
6:  store {u, Tpy } in userTable
7. return {Tpy, T Mpr} tou
8: else

9: return L

10: end if

of ID;, and the o7, , helps to ensure authenticity and integrity of
u’s token and prevents tampering with the token. Also, Cert, in
the token indicates u’s ownership of the token. Additionally, the
set of permitted service identifiers, [IDs], is included to enable easy
vetting of requests by PEC servers. Using tokens in APECS, the
PEC server is not required to contact p to verify u’s authorization.
Finally, Texp proves token’s freshness and enables a lazy revocation
process through token expiration.

5.2 Service Request Protocol

Protocol 4 details u’s service request procedure. We note that re-
questing a content is an instance of requesting a static service which
does not require user specific input data. In contrast, offloading a
computation is an instance of a user requesting a dynamic service,
which may require some input data (from the user to perform com-
putation on). These two types of services are different in the sense
that the requesting user’s data should be protected when the user
is requesting a dynamic service, hence the need for data encryption
with MABE. Initially, u has to specify if the desired service (IDs) is
dynamic (e.g., image annotation) or static (e.g., video streaming). For
a static service, u creates two of the request’s components by spec-
ifying the content_name as C1 and a null C2 (Lines 1-2). We note
that the content_name is not required to be encrypted. However,
MABE encryption can be used for encrypting the content_name
to preserve u’s privacy at the cost of additional latency. For a dy-
namic service, u first encrypts symmetric key K using the MABE
scheme with the master public key M and the requisite service
attributes represented by ID; to generate C; (Line 4). She then uses
a symmetric key cryptosystem such as AES and k to encrypt the
required service data (D) for generating Cy (Line 5). The publicly
visible attributes in the MABE policy for C; identify the specific
service requested by the user to all PEC servers who receive the
request. Subsequently, u creates her request (Req) as a four-element
Protocol 4 User’s Service Request

1: if IDy is Static Service Request then
2 Cq « content_name, Cy «— L
3: else if IDg is Dynamic Service Request then
4 Cy < ABE.Encrypt(M,, IDs, K)
5: Cy = EnCK(D)
6: end if

7: set Req = {7;,u,IDS, C1,Ca}, OReq < SignSKu (Req)
8: send {Req, OReq}




tuple, including the token 75y, the requested service with identifier
IDS, Cl, and C2.

The user then signs the crafted request using SK;, that corre-
sponds to her certificate (Cert,), embedded in 75, (Line 7), and
sends the request and its signature as a payload to the base station
to be forwarded to the edge network (Line 8).

5.3 Service Response Protocol

As detailed in Protocol 5, edge server e receives the request from
the base station (the base station just serves as a relay) and ver-
ifies the signature on the request using VK, extracted from 7,
(Lines 1-2). If signature verification fails, e returns error and drops
the connection (Lines 33-35). Successful verification indicates that
the request is generated by 7;,’s owner. If successful, e confirms
the freshness of 7, by comparing its expiry time (Texp) with the
current time (T¢) (Lines 4-5). Subsequently, e searches for 75, in its
revocation table (revocTable) to ensure that u has not been added
to access-denied list (Lines 6-8). If any checks fail, e returns an
error and drops the connection. In the event that a valid user has
encountered any of these failures, the user may request a new token
and obtain a valid 75, using her new certificate and established
user credentials (refer to Protocol 1). Upon token validation, e uses
ID,, that is contained within 7, to lookup Cert,, in its local cache.
If e does not have the Cert;, corresponding to ID,, it can obtain
(from the user or the service provider) Cert, using ID,, (Line 9).
On receiving Certy, e extracts the VK), from Cert), and verifies the
signature on 7p,, dropping the connection if invalid (Lines 10-11).
Successful verification validates 7,,’s integrity and provenance.
Finally, e compares u’s authorization tier (L,,) with the service tier
of the requested data (Lp), contained in the data (Lines 13-15). If
authorization fails, e drops the connection; otherwise, it moves to
the next step.

Once e has successfully authenticated and authorized u and can
process the request. Request fulfillment begins with the PEC server
identifying the requested service type based on IDs (Line-17). For a
dynamic service request, e verifies whether it offers the requested
service or not (Line 18). If e is capable, it decrypts C; using its
decryption keys [A.] and retrieves the symmetric key K, using
it to decrypt the data (D) needed for service execution (Lines 19-
21). In the event that the server does not possess the capability
to execute the service, it forwards the service request to another
server (Lines 22-23). For a static service request, e looks up the
content_name (in C1) in its cache and returns the data to the user
(Line 26-27). If the data is not available in e’s cache, it forwards the
request to another server or p as defined by the application logic
(Lines 28-29). Using MABE in APECS helps with asynchronous au-
thentication/authorization of the PEC server—a PEC server without
sufficient attributes cannot access user’s data. Moreover, MABE en-
ables efficient PEC server revocation without global system re-key;
discussed in the following.

5.4 User and PEC server Revocation Protocols

Access right revocation is a commonplace functionality of any
access control system. In APECS, we consider both user access revo-
cation as well as PEC server revocation. Of particular importance
is PEC server revocation, necessary to prevent revoked server’s
access to users’ data. We start with revocation of user u and then

Protocol 5 Edge Server’s Service Response

1 receive {Req, OReq}
2: extract {7py,IDs,C1,C2} < Req, (IDp, [IDs], Certy, Ly,
Texp) — Tpu, VKy < Certy,
: if true « Verifyy g (Req, 0Req) then
if Texp < T then
return error
else if 7, € revocTable then
return error
end if
Certp < lookupProvider(IDp), VKp « Cert,,
10 if false « VerinyKp(aq;u, Tpu) then

R R A

11: drop connection

122 endif

13:  retrieve Lp for content_name
14: if L, < Lp then

15: drop connection and return error

16:  endif

17: if IDg is Dynamic Service Request then

18: if true « checkServerCapability(IDs) then
19: K < ABE.Decrypt(Mpg, [Ae], C1)

20: D « Decg(Cz)

21: return fulfillService(D)

22: else

23: requestService(Req, oReq)

24: end if

25 else if IDg is Static Service Request then

26: if true « contentCacheLookup(C;) then
27: return contentCacheRetrieve(C7)

28: else

29: requestService(Req, oReq)

30: end if

31 endif

32: else

33 drop connection and return error

34: end if

PEC server e. As shown in Protocol 6, for revoking u, p removes
Tpu from its userTable and forwards the token to its AIA that is
hosted on the Cloud (Line 1). On receiving the revocation notifi-
cation, C retrieves the list of all PEC servers who could serve u,
and notifies them of the revocation (Lines 2-6). Revocation commu-
nication could be done scalably using distributed ledger [15, 29].
On revocation notification, each e will add Tpu to its revocTable
(Lines 7-8). If a token is expired, the entry can be removed.

In APECS, revocation of e is handled by the AIAs (Provider and
Base stations) who execute the MABE algorithms via a local system
re-key for the non-revoked PEC servers (updating M to M;, o)

While ABE revocation is generally costly, due to system re-keying,
APECS uses the MABE scheme in a way that optimizes PEC server
revocation. When p decides to revoke e, it instructs e’s base station
(the second ATA managing far less number of PEC servers that
p) to revoke e (Lines 1-2 in Protocol 7). The base station updates
its public/private key pair and shares it with other AIAs, enabling
AJAs (including the base stations) to run the MABE system setup
for calculating M 1’) « (Line 3). The base station then generates and



Protocol 6 User Revocation
{At Provider}
1: delete 75y, for u from userTable and notify C.
{At Cloud}

: receive {7py } from p.

. E « edgeServersWith([IDs]), EC E
: for each e € E do

notify e of revoked 75y,

. end for

QG s W

{At Edge Server}

7: receive Tpy from C.
8: add 7py to revocTable.

distributes a new set of secret keys for all of its PEC servers, except
the revoked one (Lines 5-11). Finally, the base station broadcasts
the new public parameters to the users in its vicinity (Line 12). This
revocation localizes the re-keying operation to only the PEC servers
associated with the revoking base station.

The PEC server revocation can be optimized if base stations are
more involved in service orchestration. In such case, on receiving a
service request, the base station acts as a broker and steers requests
away from revoked PEC servers. In addition, the service provider’s
ATA hosted on C can update the base stations’ revocTable with
a set of revoked PEC servers reported by other base stations to
prevent revoked PEC servers from migrating to other base stations.
Thus, minimizing the number of system re-keys and eliminating
the need to re-key the local PEC servers per revocation.

5.5 APECS PKC-based Design

We also propose APECS PKC as an alternative APECS design that
utilizes the traditional public key cryptosystem (PKC), which has a
less complex system and security configuration (using transport
layer security and the PKC infrastructure). APECS PKC is suitable
for static scenarios where the user is aware of the PEC servers and
their services (through a service discovery process, which we do not
discuss) and the user(s) and PEC servers can synchronously interact.
Protocol 7 Edge Server Revocation

{at Provider}
1: identify é € E that should be revoked.
2: notify base station b, € B that ¢ is associated with.

{at AIAs}
3: (Mlljk = (sysparam,apki,...,apky), aski, ..., ask,’l) —
ABE.Setup(1%, n); {updated by,’s public/private key pair}

{at Base Station}

4 Ep CE; {all PEC servers associated with b,}
5: for eache € E; do

6. if e # é then

7: [AL] « ABE.KeyGen(M[’)k, aske, ide, [IDs])

8: store {e, [AL]} in serverTable

9 return {e, [A,]} to e

10:  endif

11: end for

12: broadcast M’, to U
Pk

Considering APECS PKC is an obvious choice for static environ-
ments, we will discuss its design and assess its efficacy. APECS PKC
also provides a very good foil to compare APECS more thoroughly.
In this approach, a PEC server has to obtain a customized token
(similar to users’ tokens) from each service provider and the base
station, it is associated with, to prove its affiliation with them to
the user (affiliation is the token pair from the provider and the
base station). This is in contrast with the APECS design where PEC
servers have to obtain MABE credentials. The tokens issued by the
providers and base stations are signed by them for authentication.

To request a service, after selecting a PEC server, the user es-
tablishes a Transport Layer Security (TLS) connection with the
PEC server to securely share her authentication token obtained
from the provider. Upon successful verification of the user’s token
(Lines 2-12 of Protocol 5), the PEC server shares its tokens (from
the service provider and the base station) with the user. This allows
the user to verify the shared tokens’ integrity and provenance (in a
process similar to Lines 2-12 of Protocol 5), and by extension, the
PEC server’s authenticity for the requested service. On success-
ful mutual authentication/authorization, the user securely shares
her data with the PEC server for service execution and the server
responds with the computation results. We note that the TLS chan-
nel should be established using the certificates that are contained
in the tokens (for both the user and the PEC server) to avoid a
challenge-response for mutual authentication.

6 APECS SECURITY ANALYSIS
6.1 Formal Security Analysis

We now provide a formal analysis of APECS in the Universal Com-
posability (UC) Framework [2]. The notion of UC security is cap-
tured by the pair of definitions below:

DEFINITION 6.1. (UC-emulation [2]) Let & and ¢ be probabilistic
polynomial-time (PPT) protocols. We say that w UC-emulates ¢ if for
any PPT adversary A there exists a PPT adversary S such that for
any balanced PPT environment Z we have

EXEC¢,S,Z ~ EXEC”’_«;[’Z

DEFINITION 6.2. (UC-realization [2]) Let  be an ideal function-
ality and let 7 be a protocol. We say that = UC-realizes F if = UC-
emulates the ideal protocol for .

We define an ideal functionality, Fapgcs, consisting of five inde-
pendent ideal functionalities, Fregister, Fresponses Frevokes Fsmt» Fsig-
Fregister models the user and edge servers’ registration processes,
Fresponse models the processing of a user’s service request, and
Frevoke Models the revocation functionality. We use two helper func-
tionalities from [2], Fsig and Fsmt, to model ideal functionalities for
digital signatures and secure/authenticated channels, respectively.
We assume that Fapgcs maintains internal state that is accessible
at any time to Fregister> Fresponse and Freyokes specifically three ta-
bles, uTable, sTable and dTable. The parties that interact with the
ideal functionalities are the members of sets of edge servers, EC,
service providers, SP, base stations BS, and a user u. We assume
that each member of the three sets has a unique identifier. The
dTable contains all data provided by different service providers,
uTable contains details about the services a user is registered for,



Functionality Fregister

(1) When a service provider, SP € SP sends a request,
(register, spid, sname, scat, sdata, stype), Fregister adds tg =
(spid, sname, scat, sdata, stype) to the dTable; if t; already
exists, Fregister Teturns tg. When an SP sends a request
(update, spid, -, -, -, -), Fregister updates t;. When an SP sends
arequest (deregister, spid, sname, scat), Fregister deletes the
corresponding tuple t; from dTable.

(2)(a) When a user u sends a registration request,
(register, uid, scat, spid) to Fregister (Where uid, spid
are the user’s and service provider’s unique identi-
fiers, scat is the category of the service u wishes to
subscribe to), Fregister checks if there exists a tuple
ty = (uid, scat, spid) in uTable. If yes, Fregister returns t,
to u, and forwards (exists, t,) to S. Else Fregister sends a
message, (register, uid, scat) to SP € SP whose identifier
is spid. If SP responds with an “allow”, Fegister adds
tuple t,, = (uid, scat, spid) to uTable, returns “success” to
u, and forwards (newreg, ty;) to S. Else Fregister returns
1 to u, and forwards (failReg, uid, scat, spid) to S.

(b) When u sends a request (update, uid, scat’, spid), Fregister
retrieves a tuple t, = (uid, -, spid) in uTable. Fregister
sends a message, (update, uid, scat’), to SP. If SP
replies with L, Fregister returns L to u, and forwards
(failUpdate, t,) to S. Else Fregister updates or creates
(if the retrieval of t, returned 1) a tuple t, with
(uid, scat’, spid), and returns “success” to u, and forwards
(successUpdate, t,) to S. In case a new t;,, was created,
Fregister forwards (newreg, t,,) to S.

(c) Ifa user sends a request (deregister, uid, -, spid), Fregister
deletes tuple t,, = (uid, -, spid) in uTable and forwards
(deregister, uid, -, spid) to SP, and S.

(3)(a) When an edge server, EC € EC, identified by ecid sends a
request to Fregister, (register, spid, ecid, bsid), where spid
is the identifier of a service provider SP € SP whose
services EC wants to offer via bsid which denotes the
identifier of a base station BS € BS, Fregister checks if
there exists a tuple in sTable, ts = (spid, ecid, bsid). If yes,
Fregister returns ts to EC, and forwards (exists, t5) to S.
Else Fregister sends a message (register, spid, ecid, bsid)
to SP and BS. If SP and BS both respond with “allow”,
Fregister 2dds tuple ts = (spid, ecid, bsid) to sTable, col-
lects all tuples t; = (spid, -, -, -, -) from dTable, sends them
to EC, and forwards (newreg, ts,t7) to S. If either of
them respond with L, it returns L to EC, and forwards
(failReg, spid, ecid, bsid) to S.

(b) If EC sends a request (deregister, spid, ecid, bsid),
Fregister deletes tuples ts from sTable, and forwards
(deregister, spid, ecid, bsid) to SP, BS, and S.

Figure 2: Ideal functionality for Service Registration

and sTable contains information about the service providers an
edge server provides services on behalf of. We now briefly describe
the design of our ideal functionalities.

Fregister: The Fregister functionality shown in Figure 2 handles
the system setup and registration/de-registration of a user u and
members of EC. This also handles registration of data associated

with members of SP, as well as service updates. When a service
provider SP wishes to register, it initiates contact with Fregister by
sending a tuple (register, spid, sname, scat, sdata, stype), where spid
denotes the unique identifier of SP, sname denotes the name of the
service SP is offering, scat denotes the service category of sname
(e.g., bronze, gold, silver), and stype indicates if a given sname is
associated with static or dynamic requests. For static requests, e.g.,
movies, sdata contains the relevant data files, for dynamic requests,
e.g., image annotation, sdata contains the algorithms needed to
process the user-supplied input. Fregister creates a new tuple in
dTable containing the data supplied by SP, if one does not exist.
Since each tuple is uniquely identified by (spid, sname, scat), when
SP de-registers, it just needs to send (spid, sname, scat) to Fregister
who deletes the tuple from dTable.

When a user u, identified by uid, wants to register for a service,
it contacts Fregjster With (register, uid, scat, spid). We assume that
a user can register for only one category of service with an spid.
If SP permits u to register, Fregister 2dds u’s information to uTable,
and forwards the registration information to S. Similarly, when an
already-registered u wishes to update their service category to scat’,
Fregister Will check with SP and act accordingly. Fregister Will also
notify S whether the update request was successful. When u termi-
nates its service and de-registers from an spid, Fregjster deletes the
unique tuple (uid, -, spid) without needing to ask SP’s permission,
but informs SP and S about u’s de-registration.

An edge server EC will register with both a service provider
SP and a base station BS (with bsid) to model the fact that in the
real world, all entities communicate over networks through their
local base stations. We assume each EC will register with a unique
(SP, BS) pair, i.e., the tuple (spid, ecid, bsid) is unique. If both SP
and BS approve of EC’s request, Fregister Will add EC’s information
to sTable, else it will notify EC and S that the registration request
was denied. At this point, Fregister Will also send to EC and § in-
formation about all the services EC is registered for with all SPs.
When an EC wishes to stop providing services on behalf of an SP, it
de-registers itself. Fregister deletes the unique tuple (spid, ecid, bsid)
from sTable, without needing to ask SP’s or BS’s permission, but
informs them and S about it.

Fresponse: The Fresponse functionality shown in Figure 3 handles

a service request from a user identified by uid. When the uid, that
registered with service provider spid, submits a request to Fresponse
for a service identified by sname, it sends a request containing
(spid, sname, uid, bsid, udata). The bsid and spid in the request help
identify the list of ecids connected to the base station bsid that the
user is connected to, and that can process the user’s request. The
request also includes user data (udata) which would be used by ecid
if sname is a dynamic service that needs to process the user data,
udata would be L if the request is a static request.

Once Fresponse receives the request from the user, it forwards
(recvReq, spid, sname, uid, bsid, udata) to S and retrieves the tuple
tqg = (spid, sname, scat, sdata, stype) from dTable containing spid
and sname. If no such tuple exists, then the service requested by
uid is not offered by spid and a L is returned to the user along with
(failReq, spid, sname, uid, bsid, udata) to S, otherwise Fresponse con-
tinues to the next step. Next, Fresponse checks whether uid is au-
thorized to access service sname from spid. It retrieves tuple f,



Functionality Fresponse

(1) Upon receipt of a request (spid, sname, uid, bsid, udata)
from a user, Fresponse retrieves the data tuple,
tq = (spid, sname, scat, sdata, stype) containing
spid and sname from wuser’s request and sends
(recvReq, spid, sname, uid, bsid, udata) to S. If
ty does not exist return L to user and send
(failReq, spid, sname, uid, bsid, udata) to S.

(2) Then Fresponse checks the uTable and retrieves user tu-
ple t, = (uid, scat, spid) where uid in t,, is same as that
in user’s request, and spid and scat are same as those
in tg. If no such t, exists return L to user and send
(failReq, spid, sname, uid, bsid, udata) to S.

(3) Fresponse then retrieves all tuples matching t; =

(spid, -, bsid) in sTable where spid and bsid in t is the same

as that in the user’s request. If no such tuples exists return

1 to user and send (failReq, spid, sname, uid, bsid, udata) to

S.

If all previous verifications pass, then Fresponse forwards

request (uid, sname, udata) to all edge server ecids in the

tuples that was retrieved in the previous step and forward

(ReqEC, uid, sname, udata) to S.

Each ecid, on receiving a request from Fresponse, does: 1) If

stype associated with sname is “static”, then ecid retrieves

the sdata associated with sname and returns msg = sdata
to Fresponse- 2) If stype associated with sname is “dynamic”,
then ecid retrieves the sdata function associated with sname.

It runs sdata(udata) — msg and forwards msg to Fresponse-

(6) Fresponse forwards the first msg associated with the current
request received from any ecid to uid and S, and discards
all other following msgs.

—
N
=

—
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Figure 3: Ideal functionality for Responding to Requests

from uTable containing uid, spid from the request, and scat from
tq. If no such tuple exists, then this reflects that the user is not
signed up with the given spid to access services tagged under
scat category and a L is returned to the user and Fresponse sends
(failReq, spid, sname, uid, bsid, udata) to S. Fresponse then retrieves
all tuples ts = (spid, -, bsid) to identify all ecids that can process the
user’s request. If no such tuple exists, then this indicates that there
are no ecids connected to bsid that can process the user’s request
and provide services on behalf of spid. Fresponse returns L to the
user along with (failReq, spid, sname, uid, bsid, udata) to S.

If all the above checks succeed, then Fresponse has a list of all
ecids available to process the user’s request and uid is a verified sub-
scriber to the requested service. Fresponse sends (uid, sname, udata)
to ecids in the tuples tg, retrieved in the previous step and for-
wards (ReqEC, uid, sname, udata) to S. When each ecid receives
the request, if sname is a static request, then ecid retrieves the
data associated with sname and responds to Fresponse With msg
containing sdata. If sname is a dynamic request, then the ecid
retrieves the algorithms, sdata associated with sname, processes
udata, sdata(udata) — msg, and responds to Fresponse With msg
which contains the output. Fresponse on receiving the first msg
from any ecid forwards it to uid and drops all subsequent msgs
from other ecids. Fresponse also forwards msg to S.

Functionality Feyoke

(1) Upon receipt of a request (revoke, spid, ecid) from SP (spid),
Frevoke checks the sTable for all tuples ts = (spid, ecid, -).
If any exist, Frevoke deletes the tuples from sTable and for-
wards (revoke, spid, ecid) to all bsids in the deleted tuples.
Else returns L to SP.

(2) Upon receipt of a request (revoke, uid, spid) from SP identi-
fied by spid, Frevoke checks the uTable for all tuples of the
form t, = (uid, -, spid). If any exist, it deletes the tuples
from uTable and returns “success”. Else, it returns L.

Figure 4: Ideal functionality for User/Edge Server Revoke
Frevoke: The Frevoke functionality shown in Figure 4 handles the

revocation of an edge server by service provider SP. The functional-
ity also handles the revocation of a user’s access to services provided
by SP. When Fieyoke receives a request (revoke, spid, ecid) from ser-
vice provider spid, it checks the sTable for the existence of all tuples
(spid, ecid, -) and deletes all such tuples if any exist. This effectively
revokes an EC identified by ecid from providing services on behalf
of SP. When Feyoke receives a request (revoke, uid, scat, spid) from
service provider spid, it checks the uTable for existence of a tuple
(uid, scat, spid) and deletes it if such a tuple exists. This effectively
revokes an user identified by uid from services provided by SP
under scat subscription category.

We further discuss the design of our ideal functionalities and
provide the proof of the following theorem in Appendix 11.

THEOREM 6.1. Let Fapecs be an ideal functionality for APECS.
Let A be a probabilistic polynomial-time (PPT) adversary for APECS,
and let S be an ideal-world PPT simulator for Fapgcs. APECS UC-
realizes Fapgcs for any PPT distinguishing environment Z.

6.2 Informal Security Analysis

Before elaborating on malicious PEC servers and service consumers,
we briefly mention the impact of misbehaving cloud providers and
base stations. In APECS, the Cloud is the enabler of the commu-
nication between the PEC servers (hosting the service providers
instances) and the service providers. As such, it does not play any
active operational role and hence, its malicious behavior does not
impact the system’s security. In this paper, we built a federated
authority by considering two AIAs (one at the service provider and
one at the base station connected to the user device) so that the
malicious intent of one does not compromise the security and pri-
vacy of users’ data. Only with both AIAs being malicious, the users’
data can be decrypted illegally. Thus, malicious base stations alone
cannot violate users’ privacy. Note that using two AIAs is only for
illustration purposes. APECS can use multiple AIAs (N), in which
case, the system tolerates N-1 AIAs going rogue. In fact, we use
three AIAs for illustration in our experimental results (Section 7).

6.2.1 Malicious PEC Server. As per Section 3.3, a malicious PEC
server may hijack the communication or impersonate legitimate
PEC servers to obtain users’ data. Moreover, a malicious PEC server
(authorized server that does not follow the protocols) may collude
with an unauthorized user to illegitimately provide a service. In
APECS, the user encrypts the data (if needed) using a symmetric
cipher and encrypts the corresponding symmetric key using MABE.
This allows only the authorized PEC servers (having requisite secret



keys from all AIAs) to successfully decrypt the symmetric key and
decrypt the user’s data. This prevents the unauthorized servers
from obtaining the user’s data (threat (e) in the threat model).

A colluding PEC server could provide either/both the static and
the dynamic service to an unauthorized user. In the former, an
unauthorized user obtains a content either from the malicious PEC
server or by intercepting the channel. Encryption of the content by
the service provider using a key pre-shared with the users (using
techniques such as ABE or broadcast encryption) can ensure that
unauthorized users cannot decrypt the content (threat (f)) [16, 17].
In the latter case, we argue that there is no incentive for a PEC
server to use its resources for executing a service without being
compensated assuming an accounting/billing framework exists for
tracking legitimate service execution for compensation.

We also note that a malicious service provider may attempt to
orchestrate a denial of service (DoS) attack on the PEC servers
by assigning expired or short-lived tokens to its users. However,
obtaining a fresh token from service providers incurs negligible
cost (it only requires one round trip time per user) and does not im-
pose any overhead on the PEC servers processing. Furthermore, by
orchestrating such a DoS campaign, the service provider sacrifices
its users’ quality of experience, which only damages its reputation.
Thus, we do not consider such DoS attacks a common threat.

6.2.2  Malicious Service Consumer. Following the threat model, con-
sumers’ threats include requesting services without valid tokens
(e.g., forged or expired) and unauthorized use of valid tokens (e.g.,
shared, intercepted, or replayed). In APECS, PEC servers assess
tokens’ validity by verifying the service provider’s signatures on
tokens and the consumers’ signatures on requests (request include
the signed tokens). A provider’s signature on a token can be verified
by its certificate while the service consumer’s signature should be
verified using the certificate embedded in the signed token. This
prevents a malicious consumer from sharing his token with unau-
thorized users (threats (a) and (d)). The only possibility for a mali-
cious service consumer to successfully share his token is to craft a
signed request and share it with the unauthorized user. For this at-
tack to be successful, the malicious consumer has to further modify
the timestamp of the request’s signature or forward it instantly. We
note that such an attack can be thwarted by updating APECS with
a challenge-response interaction between the service consumer
and the corresponding base station ahead of service request. The
base station uses the consumer’s certificate embedded in the token
to validate the identity using the challenge-response process and
subsequently allows the consumer to request the service.

Prior to signature verification, edge servers verify tokens’ fresh-
ness using the embedded expiry time dropping the requests with
stale tokens (threat (c)). Moreover, edge servers compare the re-
quested service provider’s identity with the one contained in the
token to prevent a malicious consumer from using a valid token
for other services (e.g., using face detection token for the image
annotation service). Thus, by virtue of the signature on the token
and its embedded information, edge servers can detect and drop
forged or expired tokens (threat (b)).

7 EXPERIMENTAL RESULTS AND ANALYSIS

7.1 Implementation Scope

The reference implementation of APECS comprises four compo-
nents: the user engine, the PEC server engine, the service provider
engine, and the cloud engine, all implemented in C++. We used
Pairing-Based Cryptography (PBC) library (v.0.5.14) and C Program-
ming Language (v.9.3.0) for the MABE implementation, and C++
libssl-dev library (v.1.1.1) for the symmetric key functionality. The
MABE framework was evaluated using the default “Type a” curve
provided by the PBC library which uses symmetric pairings for all
the pairing operations. For communication between these engines,
we used the gRPC framework (v.1.20.0). The user engine is in charge
of executing functions on the user’s behalf, including the user’s
data related functions, i.e., generation, storage, and encryption, to-
ken related functions, i.e., obtaining, storing, and consuming, and
data encryption/decryption. For APECS PKC, we extended the user
engine by verifying the PEC servers’ tokens. The user engine is
implemented in 1630 source lines of code (SLoC). The PEC server
engine performs authentication, authorization, and users’ service
execution. We implemented the token verification process in C++
using the jwt-cpp library. Features such as revocTable and content
cache are maintained by calls to a local NO-SQL mongoDB database
(v.4.2.9). All communication uses gRPC framework with TLS 1.2.
The PEC server engine is implemented in 2000 SLoC.

The provider engine operates the service provider’s function-
alities, such as storage of userTable in a local NO-SQL mongoDB
instance, user registration, token renewal, revocation, and content
delivery using gRPC C++ library. It further cooperates in the setup
of the MABE framework through the use of the PBC library. The
provider engine is implemented in 1950 SLoC. The cloud engine
hosts the service providers’ AIAs. As such, it runs a portion of
MABE framework setup, which is implemented using the PBC
library. The cloud engine maintains a local NO-SQL mongoDB in-
stance to store providers’ profiles and revoked tokens. Using gRPC
framework, it maintains standardized API routes for the invocation
of edge servers, provider registration, and access-denied notifica-
tion. The cloud engine is implemented in 600 SLoC.

For comparison, we prototyped an access control enforcement
mechanism that uses trusted centralized Cloud for enforcement of
access policies—a common approach that is currently adopted by
many providers. In our prototype, users obtain authentication to-
kens (Definition 4.1) from the service providers and share them with
the Cloud over secure channels (TLS) whenever requesting a ser-
vice. The Cloud follows the APECS PKC token verification process
to authenticate and authorize users. However, due to the common
assumption of Cloud’s trustworthiness, users do not authenticate
the Cloud (a one-way authentication of the users).

7.2 Experiment Setup

The assessment of MABE performance in isolation was performed
on three device classes. The first device class is that of a Compact
Edge device which is represented by a Jetson TX2 with 8 GB of
RAM and a CPU cluster composed of a dual-core NVIDIA Denver2
and a quad-core ARM Cortex-A57, both operating at 2.00 GHz.
The second device class, a handheld device, is represented by an
InstaGENI virtual machine (VM) with 1 GB of RAM and a 2.10 GHz



Figure 5: Node placement in GENI. User (0) and Edge Server
(E) are hosted at the University of Colorado. Provider (P) and
Cloud (C) are hosted at Cornell and New York Universities.

Intel Xeon CPU E5-2450. Finally, the third device class used for
MABE performance evaluation is a Desktop with 16 GB of RAM
and a 3.60 GHz Intel Xeon W-2123 CPU.

In our experiments, we configure the MABE system with three
AlAs to represent a more complicated scenario for studying scal-
ing (instead of the relatively simpler scenario with two AIAs—one
service provider and one base station). An access policy has max-
imum two attributes per AIA. In realistic operating scenarios of
APECS, we do not expect more than two attributes per AIA, e.g.,
ATA’s identity and service type. For consistency, in APECS PKC each
PEC server uses three tokens per user request. We perform APECS
reference implementation on a network consisting of four virtual
machines (VMs) hosted on the distributed GENI testbed [1]. We
chose the GENI testbed as it provides a large-scale and geograph-
ically distributed network experiment infrastructure-the closest
resemblance to real networks. We deployed each VM in different
GENI Aggregates across the United States to resemble a true edge-
cloud network topology. As shown in Figure 5, the instance at New
York University runs the cloud engine, the user and PEC server
engines run on dedicated VMs at University of Colorado, and the
provider engine runs at Cornell University. In assessing the ac-
cess control throughput, we deployed our PEC server engine on
Desktop-class and Handheld-class platforms.

7.3 Results and Analysis

We benchmarked the performance of MABE using the PBC library,
encrypting and decrypting a 512 bit symmetric key on three de-
vices classes mentioned above, namely Compact Edge, Handheld,
and Desktop. The PBC library is built on top of the GNU Multiple
Precision Arithmetic Library (GMP) library. Figure 6 represents
the results averaged over 1000 paired encryption-decryption runs.
For the Compact Edge device-the lowest computation capability—
encryption took about 20.6 milliseconds, while decryption took
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Figure 6: Benchmark timing of multi-authority attribute-
based encryption [3] across multiple platforms.
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Figure 7: Comparison of average runtime for proposed and
contemporary access control approaches.

19.1 milliseconds. Using the handheld device reduced the encryp-
tion latency to 17.4 milliseconds and decryption to 14.7 milliseconds.
We note that the handheld device is represented by a VM instance
which explains the presence of a larger error range. Finally, for the
desktop device, encryption was completed in 7.9 milliseconds and
decryption was completed in 4.8 milliseconds.

In Figure 7, we present the results comparing the average runtime
of APECS (both MABE and the PKC approaches) with contempo-
rary access control approaches involving the Cloud. We note that
the combined code, which combines the MABE implemented in
C with the networking and PKC in C++ still has room for opti-
mization®. We now discuss the results from the partially optimized
code. We benchmarked the performance of APECS, APECS PKC, and
the cloud-based access control on the GENI testbed. We measured
the end-to-end latency of these schemes for 1000 service requests
while timing the individual components that make up the com-
plete interaction. As shown in Figure 7 APECS was the fastest in
performing mutual access control with around 123 milliseconds,
followed by APECS PKC with 186 milliseconds, and the Cloud ac-
cess control with 262 milliseconds. Note that APECS drastically
reduced the Cloud access control latency, by 50%, despite perform-
ing mutual access control between the users and PEC servers (the
Cloud prototype performs only user authentication and authoriza-
tion). We highlight the simplicity-efficiency trade-off in APECS and
APECS PKC: APECS PKC’s simpler design comes with a higher mu-
tual authentication latency (roughly 50% increased latency), which
is undesirable in many dynamic edge applications.

Table 2: Averaged Latency (msecs) Across Three Approaches

Operations APECS | APECS PKC | Cloud
Service Discovery - 69.5 -
Symmetric Encryption 0.7 — —
ABE Encryption 39.0 — -
Request Signing 35.6 — —
Network/System Latency 5.8 79.5 252.0
User Token Verification 4.8 5.8 9.6
Edge Token Verification — 314 -
Request Signature Verification 2.7 — —
ABE Decryption 33.8 — -
Symmetric Decryption 0.5 - —
Total 122.7 186.1 261.6

For APECS PKC, we implemented a rudimentary service discov-
ery process, in which the user securely obtains the list of eligible

3Code is available on https://github.com/nsol-nmsu/APECS.
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Table 3: APECS Communication Complexity

Provider Reg. ‘ PEC Server Reg. ‘ User Reg. ‘ Service/Data Request/Response ‘ User Revocation ‘ PEC Revocation

o(1) ‘ O(|P +BJ) ‘ o(1) ‘

PEC servers (for a given service) from the base station ahead of
service request. Note, as we concentrate on access control, service
discovery is out of the scope for this paper. In APECS PKC, the
end-to-end latency is composed of service discovery and is dom-
inated by the secure communication between the user and PEC
server (both using TLS connection). Finally, in the cloud-based
access control, the secure communication between the user and
the Cloud is the dominant portion of the authentication latency.
Table 2 includes the averaged timing of each individual operation
in APECS, APECS PKC, and Cloud. The missing values correspond
to operations that are not needed in the corresponding approaches.
We note that the network latency in APECS PKC and Cloud encom-
pass the setup and encryption and decryption in the TLS; no ABE
operation has been used in these two approaches.
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Figure 8: Access control enforcement throughput for static
and dynamic service requests on two platforms.

Finally, we benchmark the throughput of APECS and APECS PKC
on a single PEC server. We define the throughput as the number
of authentication and authorization operations that a PEC server
can perform in unit time (Figure 8). To eliminate network and com-
munication latency based variances we eliminate them by running
all four components of APECS on the same machine (the one that
was being tested). In this experiment, the user sent 1000 service
requests to the PEC server. Note that the service request processing
does not include the service execution (e.g., image annotation) to
clearly identify the throughput of the access control process.

For APECS, when performing static service requests, the PEC
server engine running on the Desktop was able to process an av-
erage of 71 requests per second while the PEC server engine on
the Handheld processed an average of 36 requests per second (Fig-
ure 8(a)). In performing dynamic service requests, the Desktop
engine averaged 22 requests processed per second while the Hand-
held engine averaged 14 requests processed per second. This was
expected as dynamic service request processing includes MABE en-
cryption and decryption operations while static request processing
involves less compute-intensive cryptographic operations.

APECS PKC processed an average of 16 and 11 static service
requests per second when running on the Desktop and Handheld
devices, respectively (Figure 8(b)). As for dynamic service requests,
APECS PKC processed an average of 14 and 9 requests per sec-
ond for the Desktop and Handheld devices, respectively. Overall,

o(1) \ O([E) | O(P+E]
APECS outperformed APECS PKC both for static and dynamic ser-
vice requests. For static service requests, this result was expected
since APECS does not use MABE encryption and decryption while
APECS PKC uses TLS channel for communication. For dynamic
service requests, despite APECS using costly MABE operations, it
outperformed APECS PKC-indicating MABE operations in APECS
are more efficient than establishing TLS sessions in APECS PKC.
We also assessed APECS communication complexity (Table 3).
The service provider registration process incurs constant commu-
nication complexity as it requires a round trip communication
between the provider and the Cloud. Registering a PEC server re-
quires a round trip communication between the PEC server and
each of the AlAs, leading to O(|P + B|) communication complexity
per PEC server. As per the construction in [3], each PEC server has
to obtain attributes from all AIAs corresponding to the providers.
We note that, in APECS, the number of providers and base stations is
constant. A user registration requires a round trip communication
between the user and the service provider, resulting in constant
communication complexity. Similarly, service request and response
incurs constant communication complexity (we discount the po-
tential of multiple packets being needed as determined by payload
size). A user revocation process involves the delivery of the revoked
token from the Cloud to the PEC servers that offer relevant ser-
vices, resulting in O(|E|) communication complexity. Revoking a
PEC server comprises a round trip communication from the service
provider to the base station, interaction among the AIAs for the
distribution of base station’s new key, and the distribution of new
attributes to the PEC servers that are connected to the base station.
Thus, resulting in O(|P + B|) communication complexity.

8 CONCLUSIONS

In this paper, we proposed, APECS, a distributed access control
mechanism for the dynamic PEC ecosystem. In APECS, the authen-
tication/authorization tasks are delegated to the PEC servers. APECS
utilizes capability-based tokens and multi-authority ABE with an
efficient revocation mechanism that does away with system-wide
re-keying—the major drawback of ABE schemes. We also proposed
APECS PKC, an alternative design suitable when the consumer
and the PEC server can interact synchronously. Evaluation of our
implementations demonstrated the practicality of our mechanisms.
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10 COMPUTATIONAL ASSUMPTIONS

Let G; and Gy be two cyclic multiplicative groups of prime order g
generated by g and g; respectively, é : G; X G, — G be a bilinear
map such that Vx € G,y € Gy, and a, b € Zg, é(x4, yb) = é(x, y)“b,
and é(g1,g2) # 1.

DEFINITION 10.1. The Decisional Diffie-Hellman (DDH) problem
in prime order group G =<g> is defined as follows: on input g, g%,
gb, g€ € G, decide if c = ab or c is a random element onq.

DEFINITION 10.2. Let algorithm BDH_Gen(1*) output the pa-
rameters (é(-,+), q, g1, g2, G1, Ga, GT) where there is an efficiently
computable isomorphism  from Gy to Gy. The Decisional Bilinear
Diffie-Hellman (DBDH) problem is defined as follows: given g1 € Gy,
gg,gza,gzb,gg € Gy and Z € Gr as input, decide if Z = é(gy, g2)?P¢

oré(g1, g2)R forR e Zg.

DEFINITION 10.3. The k-Decisional Diffie-Hellman Inversion (k-
DDHI) problem in prime order group G =<g> is defined as follows: on
input a (k+2)-tuple g, g°, gsz, e gsk, g* € GK*2, decide ifu = 1/s

oru is a random element of Z.

DEFINITION 10.4. Let BDH_Gen(1%) output the parameters for a
bilinear mapping (é) : G1 X Gz — Gr. The eXternal Diffie-Hellman
(XDH) assumption states that, for all probabilistic polynomial time
adversaries A, the DDH problem is hard in G1. This implies that there
does not exist an efficiently computable isomorphism ' : G; — Gy.

11 UC SECURITY ANALYSIS

11.1 Discussion

The security properties APECS aims to provide are preventing unau-
thorized users from availing services, and preventing malicious edge
servers from offering services they are not authorized to provide,



and accessing users’ input and personal data. The design of our
ideal functionalities must reflect these properties.

Fregister enforces that users can register for availing an SP’s
services only if the SP allows them to. When a user wants to up-
grade/downgrade their service category, Fregister forwards the re-
quest to SP, and allows the change only if SP permits it. An SP could,
of course refuse a user’s registration or service category update re-
quest, but we do not consider this as malicious behavior on the part
of the SP, since an SP can decide whom it wants to provide services
to. All details are stored in an internal table, uTable of Fapgcs, and
cannot be modified by users and/or service providers. When a user
is revoked by an SP, Freyoke promptly deletes the corresponding
entry from uTable. When a user tries to request services of SP in a
category it has not registered for, e.g., a bronze member requesting
gold member services, Fresponse Will check the uTable and return L
to the user. This is also true when the user tries to access services
from non-existent edge servers. Hence a user will never be able to
improperly request services it has not signed up for.

When an edge server, EC, wants to provide services on behalf of
an SP, it needs to register with SP and a base station, BS. We assume
that when an EC registers with an SP and BS, it can provide all
services offered by SP on SP’s behalf in all categories. This can be
easily modified to account for various combinations of sname/scat
offered by different ECs, but we do not depict them here for presen-
tational clarity. An EC, based on stype, can distinguish whether an
incoming user’s service request is static or dynamic. In the static
case, it returns the data (e.g., movie), and in the dynamic case, it
runs the algorithms stored in the sdata field of the corresponding
sname on the user’s input, udata, and returns the result to Fresponse.
which forwards it to the user. Thus, there is no way a malicious
EC can provide unauthorized services to a user on behalf of an SP,
either in collusion with the user or otherwise. Also, Fresponse Will
not forward any request containing udata to EC, unless it verifies
that EC is indeed authorized to service that user’s request, so EC
cannot get unauthorized access to user data/inputs.

11.2 Proof

We now prove Theorem 6.1.
Proof: We give a series of games, each of which is indistinguishable
from its predecessor by a PPT Z.

Game 0: This is the same as the real-world APECS. Z interacts
directly with APECS and A.

Game 1: S internally runs A and simulates the secure and au-
thenticated channels functionality Fsmt.

LEMMA 11.1. For all PPT adversaries A and PPT environments Z,
there exists a simulator S such that

lEXeCGa\meO,Z ~ ExeCGameLZ

The two games are trivially indistinguishable since S just exe-
cutes the simulator for Fgmt.

Game 2: S communicates with the honest parties and A, and
simulates the protocols of APECS with the help of Fapecs. A can
corrupt any user or EC at any point in time by sending a message
“corrupt” to them. Once an entity is corrupted, all their informa-
tion is sent to A and all further communication to and from the

corrupted party is routed through A. We now state and prove the
following lemma:

LEMMA 11.2. For all PPT adversaries A and PPT environments Z,
there exists a simulator S such that

ExecGamet, 7z = ExecGame2, 7

SP, EC, BS create their respective key-pairs, SP sets up the ser-
vices it offers and service categories. All public keys are published
as part of Mpy. S gets SP’s public key, certificate, Certy, creates
spid, IDy, constructs the tuple t; = (register, spid, sname, scat, -, -)
and passes it on to Fregister in the ideal-world who adds 4 to its
dTable. In the real-world, S returns IDy to SP. S receives a registra-
tion request from EC, ([IDs], Cert,), upon which it creates an ecid
associated with EC, constructs tuple ts = (register, spid, ecid, bsid)
and forwards fs to Fregister in the ideal-world who adds ¢ to its
sTable. S then forwards ([IDs], Cert,) to SP, BS who will complete
the registration in the real-world and return (e, [A¢]) to S who for-
wards it to EC. S also queries the key generation function of Fjg,
and simulates the key generation procedure for Ss;; where Siig is
the simulation of the specific digital signature scheme being used.
When an EC needs to get revoked, SP will forward to S the ecid (¢
in the real world). S will pass long é to the appropriate BS in the real
world, and in the ideal-world, S will create and forward to Frevoke
a tuple (revoke, spid, ecid). Frevoke Will delete the corresponding tu-
ple from dTable, and forward the successfully-processed revocation
request to bsid via S. In the real-world, SP and BS will update their
respective parts of M to Mé ;. and make M 1’) . public. SP, BS will
also re-key the non-revoked ECs, and pass on their new keys to
them via S.

User u sends a registration request, (user_data, Cert,) to S.
user_data contains information about the services [IDs] u is re-
questing, service provider ID,, the service categories [L, ], and ex-
piry time of the user’s subscription, Texp. S forwards (user_data, Certy,)
to SP. SP creates a token 7y, = (IDp, [IDs], Certy, [Ly], Texp), and
simulates a signature on Tpu via Ssig. S then returns (7;,u, T Mpk)
to u. In the ideal world, S constructs tuple t,, = (register, uid =
H(Tpu), scat, spid) and sends to Fregister, Where H is a collision-
resistant hash function. Fregjster Will add (uid, scat, spid) to its uTable.
If Fregister returns a L, S returns L to u. When a user u needs to
get revoked, SP will notify all ECs through S and S will forward
Tpu to the ECs in the real-world. In the ideal-world, S will create
and forward (revoke, uid = H(7py), scat, spid) to Freyoke- Frevoke
will delete the corresponding entry from its uTable.

Any user u can send a service request to S. There are three
cases to consider: a revoked user sending a service request, an un-
revoked user sending a service request and a revoked EC trying to
process the request (and thus gain access to that user’s private input
data supplied with the request), and an un-revoked user sending
a service request which is processed by an un-revoked EC. We
discuss them below:

(1) Case 1: Revoked u sending a service request: u creates and
sends a service request ((Req = (7;,1,, [ID]s, C1, C2)), 0'7;m).
S needs to forward Cy, Cz to the appropriate EC(s), since it
cannot decrypt them itself. S first does uid < H(7py) and
sends (Regq, 07;,“) to the bsid and ecids associated with spid.
S finds the appropriate spid by calling the Verify interface



of Ssig to verify the signature on T, with the appropriate
VKpig- Honest ECs will return “error”, if the user is revoked,
or if the timestamp, Ty is past its expiry date, while mali-
cious ECs may still process the revoked user’s request. In the
ideal-world, S creates a tuple (spid, sname, uid, bsid, udata)
and forwards to Fresponse- Since u was revoked before send-
ing the request, Fresponse Will return L (the check in Step 2
of Fresponse Will fail). S then returns “error” to u. S will dis-
regard any responses it receives from malicious ECs possibly
colluding with the revoked user.
(2) Case 2: Revoked EC trying to process u’s request: User u
creates and sends a service request to S similar to Case 1, and
S forwards the request to bsid and ecids. In the real-world,
each BS will revoke ECs on the request of the appropriate SP
with whom EC is registered. When an EC gets revoked, BS
will run Protocol 7, Steps 3-12, to re-issue new keys to the
un-revoked ECs who possessed the same attributes as the
EC getting revoked. This ensures that BS will not forward
(Req, o7,,,) to revoked ECs, nor will S accept any responses
from them. In the ideal-world, when an ecid needs to get re-
voked, the corresponding spid with whom ecid is registered
will send a (revoke, spid, ecid) message to Freyoke- Upon re-
ceipt of this, Frevoke Will promptly delete that ecid’s tuple
from sTable, and send the tuple to S who will not forward
(Req, 07;“) to the revoked ECs. Nevertheless, if it still re-
ceives responses from revoked EC, S will ignore them. The
rest of the simulation proceeds similar to Case 1.
Case 3: Un-revoked user sending a service request processed
by an un-revoked EC: User u creates and sends a service re-
quest ((Req = (Tpu, [ID]s, C1, C2)), 0'7;,“) as in the previous
two cases. S sends (Req, 0’7;,4) to the bsid and ecids associ-
ated with spid. The ecids response is forwarded back to S.
If the request is for a service (dynamic request), i.e., C3 # L,
S will forward the request to bsid, and all ecids. S will ac-
cept the first response it receives from an ecid. Since S for-
wards the request to all ECs, some might respond saying
they cannot provide the requested service; S ignores such
responses. Eventually, at least one EC will send a response
of the form fulfillService(-) — msg, which S forwards to
u. If the request is for data (static request), ie,Cy = L, S
will forward the request to bsid and all ecids and accept the
first response it receives. It will receive a response of the
form contentCacheLookup — msg, which S forwards to u.
In either case, if all ecids respond with a L, S returns L to u.
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Game 3: In this game, S needs to simulate the honest parties’
outputs to A; S does not have access to honest parties’ outputs
as it did in Game 2. S needs to reflect the outputs and protocol
outcomes of the ideal-world in the simulation of the real-world
protocol and any attempt by A to cheat in the real-world has to
result in the protocol aborting in the ideal-world. We now state and
prove the following lemma:

LEMMA 11.3. For all PPT adversaries A and PPT environments Z,
there exists a simulator S such that

ExeCGameZ,Z ~ ExeCGameB,Z

S sets up the public parameters, (Mpk = (sysparam, apky, . . .,

apkn), aski, ...,askn) — ABE.Setup(lA, n) and simulates SP by

creating an ID), in the real-world. Although this is done for every
SP, for simplicity, we have represented only one SP. In the ideal-
world, S creates spid, which is passed on to Fregjster to register SP
as (register, spid, -, -, -, ).

For every ecid in the real-world that A wants to control, A
sends to S a tuple ([IDs], Certe). In response S simulates and sends
(e,[Ae]) to A, where each [Ae] < ABE.KeyGen(M, aske, ide,
[IDs]). S also creates (e, [A¢]) for simulating honest ECs with ser-
vice attributes not signed up for by the A in the previous step. S
stores (e, [A¢]) for honest ECs locally. In the ideal-world, S sends
(spid, ecid, -) to Fregister- If A signals an EC be revoked, S generates
the new M’ - For the un-revoked ECs, S sends their new [A.]’ to

A. In the ideal-world, S sends (revoke, spid, ecid) to Freyoke Who
will delete all tuples of the form (spid, ecid, -) from its sTable. If A
tries to revoke a non-existent EC, S will forward (revoke, spid, -),
who will return L, which S returns to A.

A sends registration requests on behalf of corrupted users to
S. For each user u’s registration, S creates a token 7, = (spid,
sname, -, scat, -), and creates T by simulating Ssig. It returns
(Tpus 07, Mpk) to A. If A sends a message for a user to get re-
voked (along with the corresponding bsid), S sends (revoke, uid, spid)
to Frevoke: If Frevoke returns L, i.e., A has tried to revoke a non-
existent or an already-revoked user, S returns L to A. Else, S
notifies A of the successful revocation.

S receives a service request from A of the form (Req = (7py, [ID];s
,C1,C2), 0'7;)“). S checks if the service request can be satisfied by
one of the adversary controlled ECs; the request is handled locally
by A and need not be simulated. However, if the request cannot
be satisfied by an adversary controlled EC, S will utilize Fresponse
functionality to respond to the user request.

In static requests, C; is plaintext, so that tells S what the sname
is. S then calls Ssjg to verify the signature on oq,, with the appro-
priate VKp;q. This tells S what the spid is. Also, H(Tpu) — uid
which tells S what the uid is. When A sent 7py, it will tell S
which bsid the request is intended for. So, S has all the information
it needs to construct a tuple Fresponse (spid, sname, uid, bsid, Cz)
and sends to Fresponse- If the EC is not corrupted, i.e., S simulates
the output of a honest EC by forwarding the output, {msg, L}, of
Fresponse to A. Note that if Fresponse returned a L then that means
A queried on behalf of a revoked user and/or a revoked EC. When
Cy # 1 (dynamic requests), S looks at the set of attributes ID;
for the key-policy ABE that were used in the generation of Cj.
This will tell it the snames that A is requesting. S uses the locally
stored keys ([Ae]) to decrypt C; to get symmetric key K, and uses
K to decrypt C; to retrieve udata. S can then construct a tuple
(spid, sname, uid, bsid, udata) to send to Fresponse- The rest of the
simulation proceeds as in the static case.

[m]
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