Using Brightness and Saturation to Visualize
Belief and Uncertainty

Joseph J. Pfeiffer, Jr.

Department of Computer Science
New Mexico State University
Las Cruces, NM 88003 USA

pfeiffer@cs.nmsu.edu

Abstract. In developing a visual language for mobile robots, it is nec-
essary to represent the uncertainty present in robot position, obstacle
position, and even obstacle presence. In developing a visualization of the
robot’s model of its environment, this uncertainty should be presented
to the experimenter, in order to be able to evaluate the extent to which
the robot’s sensors and sensor fusion rules are providing consistent and
reliable information.

In Isaac, a project developing a rule-based visual language for mobile
robots, a time-varying diagram is used to represent the robot’s current
world model. Hue is used to represent object classes, and brightness is
used to represent the degree of belief of an object’s presence. A region
in which there is confidence that no object is present is shown as white,
while a region with high confidence in the presence of an object is rep-
resented with color. Saturation is used to represent confidence in the as-
sessment of object presence (or absence): a totally unsaturated (i.e. grey)
area represents an area in which there is no belief at all either in favor of
or against the presence of any object; a fully saturated area represents an
area in which there is high confidence in the region’s classification. The
combination of hue to distinguish between object classes with brightness
and saturation for belief and confidence results in a three-dimensional
color space for model visualization.

Sensor characteristics are encoded in belief functions; upon receiving
sensor information, both belief functions and confidence levels can be
modified. Belief functions in the presence and absence of obstacles in the
model are maintained through Dempster-Shafer evidential reasoning.

1 Introduction

An important consideration in programming a mobile robot is having the ca-
pability of visualizing the robot’s model of its environment. The visualization
includes aspects such as the robot’s location and orientation relative to envi-
ronment features known a priori, new features and obstacles which have been
discovered by the robot in the course of exploring and interacting with its envi-
ronment, and pseudo-objects added to the environment model such as markers
identifying paths which have been explored and do not need to be re-examined.

A well-known characteristic of a robot’s environment model is that infor-
mation is not perfect. Sensors return spurious values (indicating the presence
of nonexistent objects), return inexact values (giving rise to incorrect estimates
of either object or robot location), and fail to return values at all (failing to
recognize the presence of objects). Modifications to the model must take these
uncertainties into account, and a visualization should also display it. Also, since
objects in the model may overlap, the visualization must display that as well.
In this paper, we discuss the use of saturation to represent uncertainty in the
Isaac mobile robotic environment. Following this Introduction, Section 2 will
briefly describe the Isaac geometric reasoning language. Section 3 will review
Dempster-Shafer theory and describe its application and visualization in Isaac.
Section 4 describes related work, and Section 5 will present some preliminary
conclusions and future work.

2 Isaac

Isaac is a rule-based visual language for geometric reasoning, intended for the
control of mobile robots[1]. As usual in rule-based languages, a rule has a left-
hand side containing preconditions (facts which must be present to enable the
rule), and a right-hand side with postconditions (changes which will be made to
the environment as a result of executing the rule). A typical Isaac rule, imple-
menting obstacle avoidance, is shown in Figure 1.

Fig. 1. Obstacle Avoidance Rule in Isaac

In this figure, the robot is shown as an octagon. The robot’s direction of
travel is upward in the figure. The region forward and to the left of the robot in
the precondition is an avoidance region (in the actual environment and in the on-
line version of this paper this region is colored red); if this region has a non-zero
intersection with a similarly colored region in the robot’s current environment
model then the rule is enabled. The postcondition shows the result of activating

the rule: two new objects (icons representing wheels, with the left wheel stopped
and the right wheel turning in reverse) will be inserted into the environment.
These objects represent actions to be taken by the robot; these are specialized
output objects which will actuate the motors as specified[2].

For purposes of this introduction, objects in the world model are represented
as fully-saturated geometric objects. This will be generalized in Section 3.2; in
addition to hue, objects will also have variable saturation and brightness.

2.1 Rule Enabling and Application

Figure 2 shows a typical application of the rule shown in Figure 1.

(a) Obstacle in Envi- (b) Obstacle and (c) Intersection Area
ronment Rule

Fig. 2. Rule Enabling in Isaac

In Figure 2(a), the robot is shown approaching an obstacle, and Figure 2(b)
shows the obstacle avoidance rule precondition in combination with the environ-
ment. Finally, Figure 2(c) shows the intersection of the precondition with the
obstacle. As the intersection is non-empty, the rule is enabled. Color is signifi-
cant for rule enabling; a rule precondition is intersected only with objects in the
environment with the same hue as the precondition (in the actual system, and
in the on-line version of this paper, the object and the precondition are both
red).

2.2 Rule Combination

Situations frequently arise in which more than one rule is enabled simultaneously.
In these circumstances, conflicts between the rules must be resolved in order to
select a course of action.

Isaac uses a weighted average to combine the rules. Rules have weights as-
sociated with them; when several rules are activated simultaneously and have
incompatible right-hand sides, the result is the weighted average of the right-
hand sides of the enabled rules.

As an example, consider a situation in which a robot is following a planned
path, but must avoid an obstacle. The situation is shown in Figure 3. The straight
line is the planned path; it is in the model but not in the actual environment.
The area with both path and obstacle is shown in a striped pattern.

Fig. 3. Robot Following Path in Presence of Obstacle

In this situation, the robot has veered slightly to the right of the planned
path, and the rule shown in Figure 4 will be activated to bring the robot back
onto the path. This rule’s postcondition stops the left motor while driving the
right motor forward (in the actual implementation, and the on-line version of
this paper, the path and corresponding object in the rule are shown in green).

The obstacle is also shown, as described above; consequently the object avoid-
ance rule from Figure 1 is also active. These two active rules both call for the left
motor to be stopped; the course correction rule calls for the right motor to go
forward, while the obstacle avoidance rule calls for the right motor to go back.

In order to resolve the competing rule postconditions, weights are assigned
to the rules.! A reasonable weighting for the two rules described here might be
1 for the line following and 10 for the obstacle avoidance; in this case, the net

! This is a change from previous descriptions of Isaac. In the original conception,
rule weighting was defined in terms of the area of the matching rule precondition, as
described in [1]. Our intent in using this definition was to avoid the necessity of defin-
ing rule weights; unfortunately, the effect was to make anticipating rule interaction
nearly impossible.

Fig. 4. Path-Following Rule

result would be that the left motor would stop (as both rules call for this), while

: . 1.0)(—D+(1)(1) _
the right motor would be given a value of % =-.82

3 Uncertainty

The example in the previous section assumes perfect knowledge: knowledge of
the location of the robot, and knowledge of both the presence and location
of the obstacle. Neither of these is typically known in an actual environment.
Instead, sensors provide data that is both inaccurate and unreliable. Sonar, in
particular, is prone to false returns, failure to reliably generate echos on some
substances, and spreading. Consequently, we can only regard sensor inputs as
evidence (rather than certain knowledge) of possible features, and lack of input
as evidence of lack of features. The solution to this will be to respond to sensor
returns by putting objects in the model with a size and uncertainty derived
from the characteristics of the sensors themselves. Multiple sensor returns will
be fused to form a coherent picture of the environment.

3.1 Dempster-Shafer Belief Functions

Dempster-Shafer theory, and particularly Dempster’s rule of combination, pro-
vides a means of explicitly maintaining uncertainty and combining evidence from
multiple sources[3]. In Dempster-Shafer theory, propositions are represented as
subsets from a set @ of mutually exclusive alternatives for a parameter (referred
to as a frame of discernment). In our case, the only two alternatives are the
presence or absence of an object of a given color at a location in the world
model, and the subsets are {¢,T, F, 0} where ¢ is the empty set, T and F are
the presence or absence of an object, and © is TU F. A belief function Bel () is
used to represent the degree of belief in each of the subsets, where Bel () must
satisfy the following conditions:

1. Bel(¢) =0

2. 0 < Bel (T), Bel(F) < 1
3. Bel (©) =1

A point which is implicit in this definition are that the sum of the belief in the
two alternatives can be no greater than 1 (as Bel (©) = 1), but can be less than
1, allowing some portion of the total belief to be “unallocated.”

Dempster’s rule of combination provides a means of updating these belief
functions in the presence of new evidence. The interval [0,1] is divided into
three parts according to the belief functions:

I | | |
0 X, X, 1

where z; = Bel(T) and z5 — z; = Bel(F). The remainder of the interval
is the unallocated portion of the belief. To combine two belief functions, the
line segments representing their belief functions are combined as in Figure 5.
The relative areas of the nine regions of the figure provide the updated belief
function.

R Rg Ry
Y,
F
R, Rs | Ry
Y1
T Ry R, R
0 T X, F X, 1

Fig. 5. Orthogonal Combination of Belief Functions

Upon combining the two functions, we have a total of nine regions. In the
result, region Ry reflects that part of the belief function which remains unallo-
cated. The combined areas of Ry + R3 + R; represents the new belief assigned
to T'; the combined areas of Ry + Rg + Rg represents the new belief assigned
to F. Regions Rz and R4 are incompatible assignments (they represent a belief
that both of the mutually exclusive alternatives are true), so the new values are
normalized by dividing them by the total area of the compatible assignments,
1- (R2 + R4).

As an example, consider a situation in which we presently believe an area
to be clear of obstacles with certainty 0.7. For compactness, we will represent a
belief assignment with a tuple (Bel(T), Bel(F),1—(Bel(T)+Bel(F))). The third
component in the tuple is redundant, however we prefer to show the unallocated
belief explicitly. The belief assignment in this case is (0,0.7,0.3). Now assume
a sensor input is received indicating that there is an obstacle in the region; we
have a confidence of 0.8 in this sensor, so its belief assignment is (0.8,0,0.2).
Combining the sensor input with our previous belief function, the new belief
assignment is (0.14,0.54,0.32).

3.2 Visualizing Uncertainty

In visualizing the belief function, we map Bel(T) to saturation and Bel(F') to
brightness. The Bel(T') mapping uses the full range of saturation from 0 to 1;
the Bel(F) mapping only uses brightnesses from 0.5 to 1, in order that darker
lines can be used for emphasis. Combined with hue for object classification, this
results in a three-dimensional (H, S, B) color space. The mapping of belief and
uncertainty to a color is shown in Figure 6.

Bel(T)

Bel(F)

Fig. 6. Visualization of Belief and Certainty for Object

In this figure, the three corners have the following interpretation: the lower
left corner is the visualization of a region whose contents are completely un-
known. The saturation is 0, and the brightness is 0.5. The top left corner, with
Bel(T) = 1 and Bel(F) = 0, has a saturation of 1 and brightness of 0.5. Finally,
the lower right corner, with Bel(T) = 0 and Bel(F) = 1, has a brightness of
1. The figure is triangular, reflecting the fact that Bel(T) + Bel(F) < 1. In the
on-line version of this paper, the upper corner is red.

The saturation of an object with a brightness of 1 is always 0, and its hue is
undefined. This does not cause an inconsistency in Isaac, as Isaac rule precon-
ditions can only be conditioned on the presence of an object and never on its
absence.

3.3 Sensors and Sensor Rules

The rules exhibited in Section 2 are one of the three types of rules available in
Isaac: actuator rules. Sensor rules also exist for adding objects to the environment
model as a result of sensor input, and deduction rules are able to use objects
currently in the environment to perform operations such as path planning.

Isaac’s response to a sensor input is the invocation of an “input rule” to
place an object in the robot’s world model at a location determined by the
robot’s position and the sensor’s parameters|[2][4]. Due to the uncertainty in the
sensor return, the object’s location and extent are also uncertain. Consider a
rangefinding sensor such as sonar. A reading from such a sensor indicates two
things: that there is an object at the indicated distance and location, and that
there is no object closer (in that direction). A rule representing this for a sensor
with a 30° spread, and with a belief assignment of (0,.5,.5) for the close region
and (.5,0,.5) for the obstacle region would appear as in Figure 7.

Fig. 7. Example Sensor Rule

A simulation has been developed to show the results of a series of sonar
readings taken as a robot traverses a model room. The room, diagrammed in
Figure 8, is a simulated 5 meters on a side with a single 1.25 meter square
obstacle in its center. In this simulation, the robot proceeds across the left-hand
wall while taking readings to the right. The robot moves one centimeter forward
after taking each reading.

For purposes of this simulation, we use a belief assignment of (0, .1, .9) for
the close region and (.1, 0, .9) for the obstacle region. For a first example, the
sensor return is assumed to be perfect; the range returned is exactly the range
to the nearest object within the sensor’s spread. The results of the simulation
are displayed in figure 9.

Initially, we assume no information regarding the room contents, so the en-
vironment model is a uniform grey representing a belief assignment of (0,0, 1).

Fig. 8. Room to be Explored

_a

roset slow fast quit roset slow fast quit roset step slow quit

(a) Room Model Af- (b) Model After 300 (¢) Final Room
ter 150 Scans Scans Model

Fig. 9. Simulation of robot exploring room

After each sonar reading, the environment model is modified according to Demp-
ster’s Rule, and the robot proceeds forward. Following 150 readings, the appear-
ance of the room model is as shown in Figure 9(a). In the interest of clarity, the
outlines of the room and the obstacle are included in this Figure (even though it
is not actually part of the model). In the simulation, and in the on-line version
of this paper, a red arc is visible at the far extent of the white area, coincident
with the far wall.

After another 150 readings, the room model will have changed as shown in
Figure 9(b). At this point, the obstacle has also been located. More importantly
from the perspective of this work, the extent to which the robot has belief in the
presence or absence of obstacles, and the areas which have not yet been explored,
are clearly visible.

The process continues as the robot makes its way across the room; the final
model is shown in Figure 9(c). As the overlapping sensor returns have been fused,
the system shows higher confidence in the lack of obstacles in those regions which
have returned “empty” several times, and likewise shows greater confidence in
the presence of obstacles in the regions that have had multiple echo returns.

3.4 Uncertainty and Rule Activation

In Section 2.1, rule enabling is presented as the intersection between the robot’s
environment model and the preconditions of a rule. In the presence of uncer-
tainty, this is modified: a rule is enabled to the extent that an object is believed
to be present in the area defined by a rule’s precondition. Objects in which the
robot has only a slight belief have only a slight effect on the robot’s behavior.

4 Related Work

The previous work most closely related to this is Anderson’s Inter-Diagrammatic
Reasoning[5][6]. As with this work, Anderson’s diagrams divide the plain into
polygons with common properties (he refers to this as tesselating the plain); the
properties of these tesserae are represented using color. In his most developed
version of the theory, these colors are selected from a cyan-magenta-yellow sub-
tractive color space. Operations are defined for manipulating diagrams; these
are gemerally similar in nature to fuzzy logic operations (for instance, the inter-
section of two diagrams is defined by taking the minimum of each of the three
color coordinates at each point in the plain).

Inter-diagrammatic reasoning is more purely a diagrammatic reasoning sys-
tem than Isaac’s uncertainty visualization. Anderson defines a semantics of op-
erations on diagrams based on color, while this work’s use of color is only as a
visualization tool. It would be possible to redefine Dempster’s Rule in terms of
operations on the saturation and brightness of the polygons, however, this would
not be fruitful.

Dempster-Shafer theory has been used in robot localization (with a much
more detailed sonal model than described here) by [7]. This paper contains figures
representing belief functions from sonar returns; the authors use a series of figures
(one figure for presence, one for absence, and one for unallocated belief) for a
single belief assignment, with intensity representing a component of the belief
assignment.

5 Conclusions

We have described a visualization of belief functions for uncertain geometric
reasoning. This visualization is well-suited for use with Isaac’s rule processing
mechanism, as it extends the previously one-dimensional color space used by
Isaac (hue) into a three-dimensional space better making use of the capabilities
of the display device.

Our present work is focused on creating more detailed simulations of Isaac’s
behavior on mobile robots, developing models of our sensors in order to define
rules using them, and merging models produced by several robots in a single,
global model.

References

©w

. Pfeiffer, Jr., J.J.: A language for geometric reasoning in mobile robots. In: Proceed-

ings of the IEEE Symposium on Visual Languages, Tokyo, Japan (1999) 164-171
Pfeiffer, Jr., J.J., Vinyard, Jr., R.L., Margolis, B.: A common framework for input,
processing, and output in a rule-based visual language. In: Proceedings of the IEEE
Symposium on Visual Languages, Seattle, Washington, USA (2000) 217-224
Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)
Vinyard, Jr., R.L., Pfeiffer, Jr., J.J., Margolis, B.: Hardware abstraction in a visual
programming environment. In: Proceedings of the International Multiconference on
Systemics, Cybernetics, and Informatics, Orlando, Florida, USA (2000)

Anderson, M., McCartney, R.: Inter-diagrammatic reasoning. In: Proceedings of the
International Joint Conference on Artificial Intelligence, Montreal, Canada (1995)
Anderson, M., Armen, C.: Diagrammatic reasoning and color. In: Proceedings of
the 1998 AAAI Fall Symposium on Formalization of Reasoning with Visual and
Diagrammatic Representations, Orlando, Florida (1998)

Hughes, K., Murphy, R.: Ultrasonic robot localization using dempster-shafer theory.
In: SPIE Neural and Stochastic Methods in Image and Signal Processing, San Diego,
CA, Society of Photo-Optical Instrumentation Engineers, Society of Photo-Optical
Instrumentation Engineers (1992) 2-11

