
SECTION 4 Inheritance Theory
 we
Introduction

Inheritance theory performs reasoning within a graphical framework. It’s based
upon the notion of aninheritance hierarchy or inheritance network which, in turn,
was derived from the concept of semantic networks [7]. For example, suppose
wanted to construct an inheritance hierarchy for the following discourse:

Clyde is an elephant.
Elephants are mammals and they are gray.

The inheritance hierarchy could be depicted as follows:

FIGURE 4.1: Inheritance Hierarchy for Clyde the Elephant.
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Inheritance Hierarchies

The nodes of an inheritance hierarchy, such as the one depicted in Figure 4.1, r
sent knowledge and the arcs represent relationships between the nodes. We c
think of an inheritance hierarchy as having three conceptual levels. At the first le
the nodes represent instances or individuals such as Clyde. As we go higher i
hierarchy the nodes represent classes or types such as Elephants. Lastly, at th
level we find classes of properties. The following is some necessary definitions
need when talking about inheritance hierarchies [9].

General Information

More formally, an inheritance hierarchy is adirected acyclic graph. The nodes
stand for individuals, classes of properties, or generic concepts. The arcs betw
nodes represent the relationship between them. These relationships are restric
eitheris-a or is-not-a. For example, in Figure 1., the arc from Clyde to Elephant
represents the information that Clydeis-a Elephant. That is, Clyde is a specific ele
phant. The arcs that represent the is-a relationship are referred to aspositive links
while the arcs that represent the is-not-a relationship are referred to asnegative
links.

A pathwithin a hierarchy is defined like a path within a graph (see [11] for mo
on graph theory). For example, if the sequence of arcs
are included in the hierarchy, then  is considered a path with  as it’s
start point and  as it’send point. Paths can be referred to as apositive path or as
anegative path. A path is defined as a positive path, like our previous example,
unless it’s last link is a negative link. Then it is a negative path. For example, if
sequence of arcs  are included in the hierarchy, then

is considered a negative path. Thepolarity of the path is based upon this
same concept. If the path is a positive path, then the polarity is positive. Otherw
the polarity is negative.

Inferences

The concept of drawing aninferenceor conclusionis based on a path and it’s polar
ity. If we form an arc with the start point and the end point of a path along with t
polarity of the path for the relationship, then we have formed an inference. Usi
our previous two examples, we could form the conclusions  and
which we could read as  is-a  and  is-not-a  respectively. Anextension
within a hierarchy is the set of all paths that support an inference. A class is sai
be inheritable by the individual if all the paths from the individual to the class ar
positive. Otherwise, the class is said to beun-inheritable.

v0 v1 … vn 1– vn→ → → →
v0 … vn, , v0

vn

v0 v1 … vn 1– vn→ → → →
v0 … v¬ n, ,

v0 vn→ v0 vn→
v0 vn v0 vn
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Reasoning in Inheritance Hierarchies
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Paths can be constructed in a downward fashion or in an upward fashion. He
if the path  is given within an inheritance hierarchy, fol
lowing the downward concatenation of the path, we can infer is either  

 only if we infer  or  respectively. If we follow the upward
concatenation of the path, we can infer either  or  only if we infe
either  or  respectively.
Inferences are usually made with respect to a reasoner. Reasoners are divide
two categories: credulous and skeptical reasoners. Given the path
the path  within an inheritance network, acredulous reasoner would
infer either the conclusions  or  and askeptical reasoner would
infer neither the conclusion  nor . For example, in Figure 4.2, a
credulous reasoner could infer that A is-a D and that A is-not-a D because there
paths to support these inferences. However, a skeptical reasoner would not in
either because, although there are paths to support the inferences, the inferenc
contradictory each other.

FIGURE 4.2: A Hierarchy with Contradictory Information.

Pre-emption

Lastly we need to consider pre-emption. Pre-emption is the basic idea that mo
specific information should override less specific information within a hierarchy
There are two methods of performing pre-emption: on-path and off-path. On-path
pre-emptionis that a path may pre-empt another path if there is a redundant link
the pre-empted path that would short circuit the pre-emptor.Off-path pre-emptionis
a path where explicit information is used whether there is a redundant link or n

Reasoning in Inheritance Hierarchies

Negative arcs provide power that is highly desirable. They allows us to overrid
inheritable properties which would have been gained through positive links. Bu

v0 v1 … vn 1– vn→ → → →
v0 vn→

v0 vn→ v1 vn→ v1 vn→
v0 vn→ v0 vn→

v0 vn 1–→ v0 vn 1–→

v0 … vn→ →
v0 … vn→ →

v0 vn→ v0 vn→
v0 vn→ v0 vn→
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this power comes with a price because it poses two problems which we must 
come: ambiguity and redundant arcs [9, 10]. That is, the real question where n
tive arcs are involved, is which extension do we choose?

Redundant Arcs

Redundancy in inheritance hierarchies is the problem of choosing one class am
related classes. Let us consider the following inheritance hierarchy. It represent
following discourse.

Tweety is a penguin.
Penguins are birds that do not fly
Birds are flying thing.
Tweety is a bird.

The inheritance hierarchy is depicted below:

FIGURE 4.3: Inheritance Hierarchy for Tweety the Land Loving Bird

The inheritance hierarchy represented in Figure 4.3 is built directly from the di
course above. This is highly desirable because we have not lost or modified th
meaning of what was original given to us regardless if the discourse was given a
once or in different pieces over time. However, this creates a problem within th
hierarchy because we may be able to derive contradictory conclusions. For ex
ple, we can derive that Tweety is-a Flying.thing and the Tweety is-not-a Fly-

Tweety
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ing.thing. We can derive that Tweety is-a Flying.thing because we know that
Twenty is-a Bird and that a Bird is-a Flying.thing. Deriving that Twenty is-not-a
Flying.thing can be done because we know that Twenty is-a Penguin and we a
know that a Penguin is-not-a Flying.thing. To overcome this problem, we need
some methodology to make a choice between redundant links.

Several methods have been discussed to solve the redundancy problem. On
gestion, called on-path pre-emption, is to allow more specific information to ov
ride more general information. While this solution is dependent on a redundant
being present, another solution, called off-path pre-emption, does not depend u
a redundant link. The idea behind it is to allow specific explicit information to ov
ride more general information. Exceptional inheritance reasoning is another ex
ple of a method to handle non-monotonic reasoning within inheritance structur

Ambiguity

Ambiguity is the problem of choosing one class among unrelated classes. Let 
consider the Nixon diamond problem [8] which is based on the following dis-
course.

Quakers are pacifist.
Nixon is a Republican.
Nixon is a Quaker.

The discourse is depicted as an inheritance hierarchy in the following figure:

FIGURE 4.4: Inheritance Hierarchy for Nixon Diamond Problem.

Clearly, in Figure 4.4, we can derive that Nixon is-a Pacifist and also that Nixo
not-a Pacifist. We can do this by acknowledging the paths from Nixon to Pacifi
via Quaker and Republican respectively. But because no information is given a

Republican
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which class to choose over the other we could derive that Nixon is a pacifist, th
Nixon is not a pacifist, or both.

There are two common methodologies to solve this problem:ambiguity blocking
inheritance andambiguity propagation inheritance. Ambiguity blocking prevents
ambiguity as it happens. It does this by removing all incoming or outgoing arcs
from an ambiguous node. Thus, it is an idea that hopes to stop more ambiguity
later time. For example, in Figure 4.5, F and D are ambiguous with respect to 

FIGURE 4.5: Inheritance Hierarchy with Ambiguity.

Using ambiguity blocking the following hierarchy depicted in Figure 4.6. would b
produced. The incoming and outgoing arcs from D are removed because it ha
shorter path than F from A. Thus, in the process, making F unambiguous with
respect to A.

FIGURE 4.6: Ambiguity Blocking Inheritance applied to Figure 4.5.

Ambiguity propagation inheritance takes a similar but more drastic approach. 
would simply remove all traces of ambiguity. Because ambiguity is essentially c
tradictory information ambiguity propagation takes the point of view that no rea
choice can be made. Thus, no choice should be made. For example, Figure 4
depicts the inheritance hierarchy that would be created using ambiguity propa
tion. Because F and D are ambiguous with respect to A all incoming and outgo
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arcs are removed. By doing this D and F are no longer ambiguous. Several ot
versions of ambiguity propagation have been introduced but are not discussed

FIGURE 4.7: Ambiguity Propagation Inheritance applied to Figure 4.5.

Conclusion

Inheritance theory is like case based reasoning. It uses specific knowledge to 
son. Although, unlike case based reasoning, it uses general rules to draw con
sions and makes no attempt to reason based on previous examples. The gene
rules it uses are based upon the concept of a path within in a graph. Thus, inh
ance theory is reasoning based on specific knowledge that takes a step towar
soning with general knowledge. As one of the newer models of human reason
inheritance theory has not really received as much attention as the others.
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