Overview of Cyc

Tom O'Hara NMSU AI Seminar 18 February 2002

Listory

- ⇒ AM and Eurisko in early 1970's
- ⇒ Japanese 5th Generation Project in early 1980's
 - expert systems & neural networks
- ➡ Microelectronics and Computer Technology Company (MCC) founded in 1984
 - Cyc project & nine others
- Cycorp founded in 1995
- OpenCyc announced 2001

Cyc Knowledge Base Overview

- Very large knowledge base
 - 100,000+ terms
 - **□** 1,000,000+ assertions
- CycL representation language
- Microtheories for structuring the KB
- Lexicon
 - mapping from English to CycL
 - not covered in talk

Cycl representation language

- Problems with frame-based representation
 - difficulty representing assertions with arity higher than 2
 - quantification not directly expressible
 - difficulty in representing meta-assertions
- CycL based on First Order Predicate Logic (FOPL)
 - extension to KIF (Knowledge Interchange Format)

Details of GycL

- Constants
 - Case-sensitive concept identifier
 - examples: Cyc, DougLenat, BaseKB, EnglishWord
- Variables
 - Case-insensitive identifier starting with ? symbol
 - examples: ?TYPE
- Predicates
 - Terms that represent relation types defined in the KB
 - examples: isa, genls, comment

More Details of Cycl

Formulas

- An expression of the form (*predicate arg1 arg2* …)
- Truth value: {true, default true, false, default false, unknown}
- Examples:

```
(isa Dog BiologicalSpecies)
(genls Dog Carnivore)
(skillCapableOf LinusVanPelt PlayingAMusicalInstrument performedBy)
```

Logical connectors

- examples: not, and, or, implies
- Quantifiers
 - examples: forAll, thereExists

Final Details of GycL

Rule macro predicates

- Non-atomic terms
 - Functional terms: (FruitFn AppleTree)
 - Reifiable versus non-reifiable functions

Important features of the KB

- Hierarchy with two dominance relations
 - isa for instance type specification (isa DougLenat HumanCyclist)
 - genls for type generalization (genls HumanCyclist Human)
- Individuals versus Collections
 - Allows fine distinctions in assertions
 - But complicates knowledge engineering

Cyc Inference Engine

- Proprietary algorithm
- ⇒ Epistemological Level (EL) vs. Heuristic Level (HL)
- ⇒ HL Modules
 - special purpose inferencing
 - interface for defining new modules
- Inferencing no longer complete

Applications of Cyc

- Database Integration
- HPKB: High-Performance Knowledge Bases
- e-Cyc: Web searching
- RKF: Rapid Knowledge Formation
- AQUAINT: Question Answering

Upper Cyc Ontology

- subset of KB available for downloading
- approximately 3,000 terms & 13,000 assertions
- "general concepts of human consensus reality"

Predicate usage in Upper Gyc

Freq.	Predicate	Description
4503	isa	instance of type
2695	comment	comment describing term usage
2565	genls	type generalization
920	arg1Isa	argument 1 constraint
836	arg2Isa	argument 2 constraint
525	genlPreds	predicate generalization
301	not	logical not connective
243	resultIsa	function result type
120	arg3Isa	argument 3 constraint
107	implies	logical implication (i.e., rule definition)

Pro's and Con's of Cyc

Kudos

- Chosen as standard for HPKB follow-up work
- Fairing well in current RKF project (IET 2001)
- Cyc project still active after nearly two decades of work

Criticisms

- Common Knowledge or Superior Ignorance? (Locke 1990)
- Promising but not yet suitable for NLP (Mahesh et al. 1996)
- Promising but not readily usable at IRS (Sanguino 2001)

Bibliography

IET (2001), "RKF Y1 Evaluation Report", October 2001, http://www.iet.com/Projects/RKF/IET-RKF-Y1-Evaluation.ppt.

Lenat, D. B. and R. V. Guha (1990), *Building Large Knowledge Based Systems*. Reading, Massachusetts: Addison Wesley.

Lenat, D. B. (1995), "Cyc: A Large-Scale Investment in Knowledge Infrastructure." *Communications of the ACM* 38, no. 11.

Mahesh, K., S. Nirenburg and S. Beale (1996), "KR Requirements for Natural Language Semantics: A Critical Evaluation of Cyc". *Proceedings of KR-96*.

Sanguino, Roland (2001), "Evaluation of Cyc", LEF grant report, CSC, Miami, FL, March 2001, http://www2.csc.com/lef/programs/grants/finalpapers/sanguino-eval-cyc.pdf.

Russell, Stuart and Peter Norvig (1995), *Artificial Intelligence: A Modern Approach*, Upper Saddle River, NJ: Prentice-Hall.

Whitten, David (1997), The Unofficial, Unauthorized Cyc Frequently Asked Questions Information Sheet, http://www.robotwisdom.com/ai/cycfaq.html.