An Introduction to Inheritance Theory

by Nemecio R. Chavez, Jr.

Talk Overview

• What's human reasoning?

• What's so special about commonsense reasoning?

Inheritance Theory, an alternative model for representing common sense.

• Conclusion.

Defining Human Reasoning	
 A common definition involves two categories, de and induction. 	eduction
Gaby is crying.	(1)
Someone is crying.	
Gaby is crying. Everyone is crying.	(2)
Gaby is crying. The sun is shining.	(3)

Defining Human Reasoning (continued)

 An alternative definition is the strict and loose views of reasoning.

• What do the previous definitions have in common?

• Are there other definitions?

Defining Human Reasoning (continued)

• Reasoning can also be defined as Weak, based on y = F(x), and *Strong*, based on y = F(x,k), methods.

 Where does analogical reasoning (structural alignment) fit in?

Commonsense Reasoning

• What is it?

Grapes are fruit. Bananas are fruit. Onions are neither grapes nor bananas.

Commonsense Reasoning

• But what if we later learned more information?

Grapes are fruit. Bananas are fruit. Onions are neither grapes nor bananas. Onions are herbs.

Commonsense Reasoning (continued) The ability to reason with incomplete information and to ${\color{black}\bullet}$ change our minds (non-monotonic reasoning). How can we formalize it?

Commonsense Reasoning (continued)

 Mathematical logic was devised to formalize precise facts and correct reasoning.

Grapes are fruit. Bananas are fruit. Onions are neither grapes nor bananas.

 $\forall x.(grapes(x) \Rightarrow fruit(x))$ $\forall x.(bananas(x) \Rightarrow fruit(x))$ $\forall x.(onions(x) \Rightarrow \neg(grapes(x) \lor bananas(x)))$

(6) (7) (8)

Commonsense Reasoning (continued)

• Why give a computer commonsense?

• How are computers endowed with commonsense?

 Default Logic, Circumscription, Closed World Assumption, and Inheritance Theory provide a means for representing commonsense reasoning.

Commonsense Reasoning (continued)						
An example	of reasoning with <i>default reasoning</i> .					
knowledge base:	has(menu, enchiladas)	(10)				
	nas(menu, mole)					
defaults rules:	has(menu, enchiladas):M(order(enchiladas))	(11)				
	order(enchiladas)					
	has(menu, mole):M(order(mole))	(12)				
	order(mole)	(12)				

Commonsense Reasoning (continued)

 Reasoners are generally divided into two categories: skeptical and credulous.

Inheritance Theory
 An Inheritance Network or Inheritance Hierarchy is a directed acyclic graph.
• Reasoning is done using a <i>Path-Based</i> approach.

Inheritance Theory (continued)

 Negative paths introduce complications analogous to introducing negation in logic programs.

• The *principle of specificity,* more specific information should override less specific information.

Inheritance Theory: Exceptions

 An exception is the negation of an inheritable structural link in a hierarchy.

Inheritance Theory: Concatenation

• Downward concatenation in a hierarchy with the sequence of links $x_1 \rightarrow x_2 \rightarrow \dots \rightarrow x_n$ will permit the path $x_1 \rightarrow x_n$ or $x_1 \rightarrow x_n$ only if $x_2 \rightarrow x_n$ or $x_2 \rightarrow x_n$ are permitted respectively.

Inheritance Theory: Concatenation (cont.)

• Upward concatenation in a hierarchy with the sequence of links $x_1 \rightarrow x_2 \rightarrow ... \rightarrow x_n$ will permit the path $x_1 \rightarrow x_n$ or $x_1 \not\rightarrow x_n$ only if $x_1 \rightarrow x_{n-1}$ or $x_1 \not\rightarrow x_{n-2}$ respectively.

• What about *Credulous* and *Skeptical* reasoners?

FIGURE 9: An Inheritance Hierarchy for Tweety the land loving bird.

Inheritance Theory: Pre-emption

• *Pre-emption* supports the idea that more specific information should override less specific information.

FIGURE 10: An example Inheritance Hierarchy.

Inheritance Theory: Pre-emption (cont.)

 On-path Pre-emption, a path may pre-empt another only if the pre-empted path contains a redundant link that would short circuit part of the pre-emptor.

FIGURE 11: An example Inheritance Hierarchy demonstrating on-path pre-emption.

Inheritance Theory: Pre-emption (cont.)

• Off-path Pre-emption, if no redundant link exists or if the redundant link is interrupt by another node, a path that explicitly gives information overrides non-explicit paths.

FIGURE 12: An example Inheritance Hierarchy demonstrating off-path pre-emption.

Inheritance Theory: Directions of Reasoning

 A Skeptical Downward Reasoner would generate no extension.

Inheritance Theory: Directions of Reasoning A Credulous Downward Reasoner would generate the following extension. **Grey.things** African.elephant **Royal.elephant Royal.african.elephant** Clyde FIGURE 16: Directions of Path-Based Reasoning.

Inheritance Theory: Directions of Reasoning A Credulous Upward Reasoner would generate two extensions. One would be: **Grev.things** African.elephant **Royal.elephant Royal.african.elephant** Clyde FIGURE 17: Directions of Path-Based Reasoning.

 Translating a hierarchy into first-order logic isn't necessarily done on a link by link basis.

FIGURE 19: Folk Theorem Counterexample.

Inheritance Theory: Ambiguity (Continued)

• Ambiguity Blocking Inheritance hopes to stop ambiguity at a later time.

FIGURE 21: Ambiguity Blocking Inheritance applied to Figure 1.

Inheritance Theory: Expressiveness (Cont.)

• There is co-pay of 20% for diagnostic services.

 Patients in Drug Rehabilitation programs lose all rehab benefits for a year if they are non-compliant.

Inheritance Reasoning: Techniques

- NETL (Fahlman, 1979)
- FRL (Robert, 1977)
- TINA (Touretzky, 1984)
- TMOIS (Touretzky, 1986)
- EIR (AI-Asady, 1993)

Conclusion

• The cost of commonsense reasoning.

TABLE 1:The Complexity of Default Logic.

1.	Restrictions Propositional semi-normal default rules	Task Extension Finding	Complexity Σ_2^P -complete	Reference [34], [35], [36]
2.	Propositional rules	Credulous Reasoning	Σ_2^P -complete	[34], [35]
3.	Propositional normal default rules with no <i>Pre-</i>	Skeptical Reasoning	Π_2^P -complete	[34], [35]
4.	First-order rules	Credulous Reasoning	Not recursively enumerable	[8]

Conclusion (Continued)

• The *Frame Problem*, the complication of what needs to change in the representation when new information is received.

References

- [1] Rips, L.J., Reasoning, Annual review of psychology, Volume 41, 1990, Pages 321-354.
- [2] Kurtz, K.J., Genter, D., and Gunn, V., Reasoning, *Cognitive Science*, 1999, Pages 145-200.
- [3] Aamodt, A. and Plaza, E., Cased-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches, *AI Communications*, Volume 7, Number 1, March 1994, Pages 39-59.
- [4] Kolodner, J., Case-Based Reasoning, Morgan Kaufmann Publishers, Inc., 1993.
- [5] Leake, D.B., *Case-Based Reasoning: Experiences, Lessons, and Future Directions,* AAAI Press/MIT Press, 1996.
- [6] Bergmann, R. and Wolfgang, W., On the role of Abstraction in Case-Based Reasoning. *Advances in Case-Based Reasoning*, Volume 1168 of Lecture Notes in Artificial Intelligence, Springer, 1996, Pages 28-43.
- [7] Quillian, M.R., Semantic Memory, Semantic Information Processing, 1968, Pages 227-270.
- [8] Reiter, R., A Logic for Default Reasoning, *Artificial Intelligence*, Volume 13, North Holland Publishing Company, 1980, Pages 81-132.
- [9] Al-Asady, R., Inheritance Theory: An Artificial Intelligence Approach, Ablex Publishing Corporation, 1995.
- [10] Schlechta, K., Nonmontonic Logics, Basic Concepts, Results, and Techniques, Springer, 1997.
- [11] Harary, F., Graph Theory, Addison Wesley, 1969.
- [12] Davis, E., www-formal.stanford.edu/leora/cs, New York University, September 1997.
- [13] Hayes, P., and Shastri, L., www-formal.stanford.edu/leora/cs, University of West Florida and International Computer Science Institute, July, 1997.
- [14] Davis, E., *Representations of Commonsense Knowledge*, Morgan Kaufmann Publishers, Inc., 1990, Pages 106-109.

- [15] Barden, J., Lectures in Commonsense Reasoning, Artificial Intelligence II, New Mexico State University, Fall 1995.
- [16] McDermott, D. and Doyle, J., Non-Monotonic Logic I, Artificial Intelligence 13, 1980, Pages 41-72.
- [17] Ebbinghaus, H.-D., Flum, J.T., W., Mathematical Logic, Springer-Verlag, New York, 1980
- [18] Gehrke, M., Lectures in Mathematical Logic, Mathematical Logic, New Mexico State University, Fall 1994.
- [19] Reiter, R., On Closed World Data Bases, Logic and Data bases, Plenum Press, 1978, Pages 55-76.
- [20] McCarthy, J., Circumscription A form of Non-Monotonic Reasoning, Artificial Intelligence, Volume 13, North-Holland Publishing Company, 1980, Pages 27-39.
- [21] Reiter, R., A Default Logic for Default Reasoning, *Artificial Intelligence 13*, North Holland Publishing Company, 1980, Pages 81-132.
- [22] Marek, V.W., Non-monotonic Reasoning: Recent Advances, Questions and Future Directions, Invited Speaker, 8th International Workshop on Non-monotonic Reasoning, 2000.
- [23] McCarthy, J., Application of Circumscription to Formalizing Commonsense Knowledge, *Artificial Intelligence*, Volume 26, North-Holland Publishing Company, 1986, Pages 89-116.
- [24] Gelfond, M., Lifschitz, V., The Stable Model Semantics for Logic Programming, *Proceedings of the 5th International Conference on Logic Programming*, The MIT Press, 1988, Pages 1070-1080.
- [25] Gelder, A.V., Ross, K.A., Schlipf, J.S., The Well-Founded Semantics for General Logic Programs, *Journal of the ACM*, Volume 38, Number 3, July 1991, Page 620-650.
- [26] Niemela, I., Simons, P., Smodels An Implementation of the Stable Model and Well-Founded Semantics for Normal Logic Programs, *Proceedings of the Joint International Conference and Symposium on Logic Pro*gramming, 1996, Pages 289-303.
- [27] Rao, P., Sagonas, K., Swift, T., Warren, D., and Freire, J., XSB A System for Efficiently Computing Well-Founded Semantics, Logic Programming and Non-Monotonic Reasoning, *Proceedings of the Fourth International Conference*, Springer, 1997, Pages 430-440.

- [28] Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F., A Deductive System for Non-Monotonic Reasoning, Proceedings of the 4th International Conference on Logic Programming and Non-monotonic Reasoning, Springer, 1997.
- [29] Cholewinski, P., Marek, V.M., Mikitiuk, A., Truszczynski, M., Computing with Default Logic, *Artificial Intelligence*, Volume 112, Number 1 and 2, August 1999, Pages 105-146.
- [30] Blum, J., A Machine-Independent Theory of the Complexity of Recursive Functions, *Journal of the ACM 14*, Volume 2, 1967, Pages 322-336.
- [31] Papadimitriou, C.H., Computational Complexity, Addison-Wesley, 14, Volume 2, 1994, Pages 322-336.
- [32] Hopcroft, J.E., Ullman, J.D., *Introduction to Automata Theory, Languages, and Computation*, Addison-Wesley, 1979.
- [33] Ranjan, D., Lectures in Computability, *Theory of Computation*, New Mexico State University, Spring 1995.
- [34] Gottlob, G., Complexity Results for Non-Monotonic Logics, *Journal of Logic and Computation 2*, 1992, Pages 397-425.
- [35] Stillman, J., The Complexity of Propositional Default Logics, *Proceedings of the Tenth National Conference* on Artificial Intelligence, 1992, Pages 794-800.
- [36] Papadimitriou, C.H., On Finding Extensions of Default Theories, *Proceedings of the International Conference* on Database Theory, 1992, Pages 276-281.
- [37] Kautz, H.A. and Selman, B., Hard Problems for Simple Default Logics, *Artificial Intelligence*, 1991, Pages 243-279.
- [38] Stillman J., It's Not My Default: The Complexity of Membership Problems in Restricted Propositional Default Logics, *Proceedings of the Eighth National Conference on Artificial Intelligence*, 1990, Pages 571-578.
- [39] Dimopoulos, Y. and Magirou, V., A Graph Theoretic Approach to Default Logic, *Journal of Information and Computation*, Volume 112, Number 2, 1994, Pages 239-256.

- [40] Baader, F. and Hollunder, B., Embedding Defaults into Terminological Knowledge Representation Formalisms, *Journal of Automated Reasoning*, Volume 14, Number 1, 1995, Pages 149-180.
- [41] Apt, K.R. and Blair, H.A., Arithmetic Classification of Perfect Models of Stratified Programs, Fifth International Conference and Symposium on Logic Programming, 1988, Pages 766-779.
- [42] McCarthy, J., Applications of Circumscription to Formalizing Common-sense Knowledge, *Artificial Intelli*gence, Volume 26, 1986, Pages 89-116.
- [43] Schlipf, J.S., Decidability and Definability with Circumscription, *Annals of Pure and Applied Logic*, Volume 35, Number 14, 1987, Pages 173-191.
- [44] Eiter, T. and Gottlob, G., Propositional Circumscription and Extended Closed World Reasoning are π_2^p , *Theoretical Computer Science*, Volume 114, 1993, Pages 231-245.
- [45] Schlipf, J.S., When is Closed world Reasoning Tractable?, *Proceedings of the 3rd International Symposium* on Methodology for Intelligent Systems, 1988, Pages 485-494.
- [46] Papadimitriou, C.H., On Selecting a Satisfying Truth Assignment (Extended Abstract), *Proceeding of the* 32nd Annual Symposium on the Foundations of Computer Science (FOCS-91), 1991, Pages 163-169.
- [47] Gottlob, G. and Fermuller, C.G., Removing Redundancy from a Clause, Artificial Intelligence, Volume 61, Number 2, 1993, Pages 263-289.
- [48] Kolaitis, P.G. and Papadimitriou, C.H., Some Computational aspects of Circumscription, *Journal of the ACM*, Volume 37, 1990, Pages 1-14.
- [49] Cadoli, M. and Schaerf, M., A Survey of Complexity Results for Non-Monotonic Logics, *Journal of Logic Programming*, Volume 17, 1993, Pages 127-160.
- [50] Chang, C.L., Lee, R.C.T., Symbolic Logic and Mechanical Theorem Proving, Academic Press, 1973, Pages 7-92.
- [51] Crockett, Larry, J., *The Turing Test and the Frame Problem*, Ablex Publishing Corporation, 1994.
- [52] ResearchIndex, Scientific Literature Digital Library, http://citeseer.nj.nec.com.

- [53] Merriam-Webster Collegiate Dictionary, http://www.m-w.com/netdict.htm.
- [54] Morgenstern, L., *Inheritance Comes of Age: Applying Nonmonotonic Techniques to Problems in Industry*, Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence, 1998