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Abstract— In a wireless network (WN), the wireless devices
generally localize themselves with the help of anchors that are
pre-deployed in the network. Some of the techniques commonly
used for localization are Time of Arrival (ToA), Time Differ-
ence of Arrival (TDoA), Angle of Arrival (AoA), and Time
of Flight (ToF). In the wireless domain, measurements are
susceptible to errors resulting from the nature of the medium,
the relatively low precision, and the presence of obstacles,
which produce Non-Line Of Sight (NLOS) errors. The NLOS
errors are a major concern as they could result in significant
degradation in accuracy. In this paper, we propose an efficient
technique that uses the distance estimates of the device from
a group of anchors to localize the device with better accuracy
in the presence of NLOS errors. Our technique is based on
the notion that in general, for any estimate, the proportion
of the NLOS error can be upper bounded. Using this upper
bound information our technique reduces the uncertainty in
the position of the wireless device that is being localized. The
technique is distributed and is simple. In comparison to the
standard localization procedure, where localization is done
independent of the presence of NLOS errors, our technique
uses the information about the NLOS error bounds to improve
the accuracy of estimation. Simulation results show that our
technique reduces the position error of the wireless device by
40% on an average and by at least 80% in the best case. The
uncertainty in localization is also reduced significantly.

I. INTRODUCTION

Large scale distributed wireless networks (WNs) have be-
come popular in both the military and civilian domains [1].
Despite significant improvements in the abilities of these
networks, there still exist many fundamental problems that
need to be addressed.The problem of robust localization
of the wireless nodes is one such fundamental problem
in a WN. In a infrastructureless wireless network (IWN),
accurate localization is very important as most applications
require the position of the data source to utilize the data
better. In the infrastructure-based network (IBWN) or the
cellular networks, localization is useful to provide services,
such as 911 call location identification. In an IWN, for
cost effectiveness most nodes localize themselves using their
position estimates obtained from a group of nodes in the
network called the anchors [12], [13]. In the IBWN, the
basestations (BSs) perform the same role. The anchors/BSs
are fixed wireless nodes that know their own positions
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accurately, either through GPS or from pre-programmed
information. In this paper, we use the term anchor to refer
to both the anchor (in IWN) and the basestation (in IBWN).

In WNs the problem of accurate localization is fairly
complex due to the inherent errors in measurements resulting
from barriers, such as transmission delay and interference.
In addition, WNs also suffer from the Non-Line Of Sight
(NLOS) errors. NLOS errors result from obstacles between
the wireless device (WD) and the anchors, which result in
the dilation of the estimates of the device’s position obtained
by each anchor. The NLOS errors result in significant
inaccuracies in measurement and are difficult to identify.
In what follows, we illustrate the extent of inaccuracy that
can result from NLOS errors.

In a WN, there are generally two possible mechanisms for
localization, range-based and range-free [9]. In this paper,
we study only range-based localization, with attention to
the Time of Arrival (ToA) [13], [14] based technique. For
exposition, we assume that the location estimation happens
at the WD itself. Our technique also supports the alternate
mechanism where a centralized agent performs localization.
Following the ToA method, each anchor ai periodically
broadcasts its identifier (ID) and position information in
its neighborhood, as a radio signal (RS) and an ultrasound
signal (US) at the same instance of time. We denote these
two components together as the location reference. On
receipt of the location reference li from ai, each WD u,
calculates the time difference in receipt of the signals and
uses the constants, speed of light (c) and sound (s), to obtain
an estimate r̂i of its distance (ri) from ai. The calculation
of the estimate r̂i is given below by Equations 1 and 2 as,

∆t = r̂i/s − r̂i/c, (1)

r̂i = ∆t ·
1

1/s− 1/c
, (2)

where ∆t refers to the difference in time between the receipt
of the RS and the US. Due to errors during transmission,
the value of ∆t is inaccurate. This results in u being able
to only estimate ri. When u gets a sufficient number of
location references from anchors in its range it uses them
to estimate its own position (u). The estimation can be
done using techniques based on the Minimum Squared Error
(MSE) method ([14]), the maximum likelihood method ([4]),
or convex optimization ([7], [12]).

Given a WD u, we define the bound circle (Ci) of an
anchor ai in its range, as the circle with ai’s position as the
center and the radius equal to the estimate of the distance
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between ai and u. In the absence of any measurement errors,
the position of u is the point of intersection of the bound
circles corresponding to all the anchors in its range. How-
ever, when measurement errors exist, the intersection is no
longer a point. Positive errors result in the distance estimate
being greater than the true distance, while negative errors
result in the estimate being lesser than the true distance. In
the presence of positive errors, the intersection of the bound
circles could result in a bounded intersection region R, as
shown in Fig. 1. Whereas, in the event of negative errors
the intersection region may be empty (φ). In either case,
it is difficult to identify the position of the WD accurately.
NLOS errors result in a positive bias in the estimates and
are generally bigger than the positive measurement errors.
Hence, in the presence of NLOS errors with or without
positive measurement errors, invariably R is significantly
larger than that obtained with only positive measurement
errors. This difference is illustrated in Fig. 2. The dashed
circles are the bounds obtained when the measurement is
subjected to NLOS errors, while the solid circles represent
the bounds resulting from only positive measurement errors
(no NLOS errors). The brown cross-hatched area represents
the intersection region obtained from the bound circles with
measurement errors, and the pink horizontal-hatched area
represents the intersection region obtained from the bound
circles with NLOS errors. The increase in the size of the
intersection region due to NLOS errors in easily discernible.
The bigger intersection region significantly increases the
uncertainty in the estimation of the WD’s position. In the
presence of positive measurement errors and NLOS errors,

the intersection region R can be approximated by the
smallest circle that encloses it, as shown in Figs. 1 and 2.
The position of the WD can be approximated as the center
of this circle [12]. In the presence of negative measurement
errors, the bound circles can be increased to obtain an R
within which the WD is certain to exist.

In this paper, we denote the proportion of measurement
error, for an anchor ai, as δi ∈ [−δmax, δmax], and the
NLOS error as, εi ∈ [0, εmax]. If the true distance from ai

to the WD u is given by ri, in the presence of measurement
errors, the estimated distance is, r̂iδ = ri · (1 + δi). If the
measurement is subjected to NLOS error then the resultant
distance estimate is, r̂iε = ri · (1 + δ) · (1 + εi). The values
of δi and εi are unknown. This lack of information makes it
difficult to obtain ri from r̂iε. In addition, the NLOS errors
result in significant increase in R and consequently, greater
inaccuracy in localization.

We propose a technique that reduces the inaccuracies in
estimation of the position of the WD in the presence of
NLOS measurements by reducing the size of R. It is effi-
cient and requires inexpensive computations, easily afforded
by the low power WDs. Simulation results demonstrate the
efficacy of our technique. The size of R is reduced by at
least 25% on an average and by more than 90% in the best
case. The error in estimation of the position of the WD is
reduced by at least 40% on an average and by atleast 80%
in the best case.

In Section II, we present the related work. In Section III,
we present the system model along with our assumptions.
Section IV presents our proposed technique, while Section V
presents the simulation results. We conclude our paper in
Section VI.

II. RELATED WORK

ToA and TDoA are the most popular schemes used
for range-based localization in wireless networks. These
schemes are non-linear and are generally solved by lin-
earization and gradient search [8].The effectiveness of these
schemes depends on the choice of the starting point and
they are also not guaranteed to converge. Improvements
to the schemes have resulted in closed form linear tech-
niques that give optimal location estimates but at high SNR
values [3]. There are several mechanisms for NLOS error
mitigation [5]. One of them is the use of matched field
processing based on scattering models [2], however, the
scattering models are not accurate nor dynamic. Another
mechanism is localization using both the LOS and NLOS
measurements, with the NLOS measurements weighted so
as to reduce their contribution in localization [6], [10].
Although these schemes are guaranteed to work always,
they are highly unreliable. LOS reconstruction is another
mechanism, which requires the knowledge of deployment
geometry, error statistics, and timing history [15]. Another
mechanism is identification of LOS measurements from all



the NLOS measurements and using only the LOS mea-
surements for localization [5]. The identification can be
performed using probabilistic models and time-history based
hypothesis tests. This mechanism suffers from inaccurate
identification of the LOS measurements and needs atleast 3
LOS measurements.

All the schemes mentioned above require expensive com-
putations and a powerful centralized agent to perform the
compute intensive calculations. These schemes cannot be
utilized by current generation wireless devices for accurate
localization in a NLOS environment. In this paper, we
propose a distributed technique that is simple and efficient
and can be easily implemented in the low power WDs for
performing accurate localization in a NLOS setting. We
compare the efficiency of our technique with the standard
localization technique. We intend to pursue detailed com-
parison with other existing schemes as future work.

III. SYSTEM MODEL AND ASSUMPTIONS

The system model and assumptions for our proposed
technique are given below:

• The network consists of a set of anchors A = {ai, i =
1, . . . , N} that are deployed randomly and are fixed
after deployment.

• The devices (WDs) being localized may be static or
mobile.

• Each anchor ai knows its own position ai (ai =
(aix, aiy)).

• The transmission range of the WDs is r and that of the
anchors is R (R ≥ r > 0).

• The measurement error proportion of anchor ai is given
by, δi ∼ U[−δmax, δmax].

• The NLOS error proportion of anchor ai is, εi ∼
U[0, εmax], where εmax is a system parameter. We note
that often εmax can be bounded with the knowledge of
the anchors deployment layout, terrain geometry, and
the environment [10], [15].

• All devices have omnidirectional antennas.

IV. DESCRIPTION OF THE TECHNIQUE

We have noted earlier that in the presence of positive
measurement errors and/or NLOS errors (with/without mea-
surement errors) the actual position of the WD exists inside
the intersection region (R). That is, if Pi is the set of
points inside the bound circle of anchor ai(i = 1, . . . n),
in the range of the WD, then the region R = {x|x ∈
R2, x ∈ ∩n

i=1
Pi}. Since we make no assumption regarding

the distribution of the distance estimates all points inside
the region R are equally likely to be the position of the
WD. When the measurement errors are negative there might
not be an intersection region. To handle this scenario, the
bounds of the anchors can be increased proportional to δmax

(r̂iε = r̂iε · (1+ δmax)). This would result in an intersection
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Fig. 3. Reduction in R resulting from the reduced bounds

region containing the WD inside it. This procedure increases
the size of R, in general. However, we contend that the
increase shall be small compared with that due to NLOS
errors, with minimal effect on localization accuracy.

Given the region (R), it can be enclosed by a circle
(CB) [12]. CB is referred to as the enclosing circle. The
center of CB can be obtained using convex optimization [12]
and the position of the WD can be approximated by the
center of CB . The use of the center as an approximation
of the WD’s position minimizes both the average and worst
case errors [12]. In this paper, we present another simpler
technique that uses the points of intersection of the bound
circles. Some of these points form the vertices of R. Using
these vertices the smallest circle (CB) that encloses R can
be obtained. The technique is described below.

Finding the smallest enclosing circle of R: The inter-
section region R can be defined by the vertices of R. In
most cases, the smallest circle enclosing all the vertices of
R also encloses R. However, there are some cases where
this is not true. We describe how to handle these cases in
Algorithm 1. We note that reduction of R can improve the
localization accuracy significantly. To reduce R, we use the
fact that given an anchor ai and its estimated bound r̂iε for
a WD u, we can reduce the bound of ai to r̂′iε, where,

r̂′iε = r̂iε/{(1 + δmax) · (1 + εmax)}, (3)

such that u /∈ C ′

i, the reduced bound circle with radius
r̂′iε, centered at ai. We note that u /∈ C ′

i implies that
‖ u − ai ‖≥ r̂′iε. Applying this procedure for each
anchor ai in the range of u results in a C ′

i for each ai. Let
P ′

i = {x| ‖ x − ai ‖< r̂′iε}, consequently R is reduced to,
R = {x|x ∈ R2, x ∈ {∩n

i=1
Pi \ ∪

n
i=1

P ′

i }}, as illustrated in
Fig. 3. In the figure, A, B, and C are three anchors in the
range of the WD u. The dotted circles represent the bound
circles obtained using the distance estimates from A, B, and
C. The intersection region R′ resulting from the intersection
of these bound circles is the dash-hatched pink area. The
solid red circles are the reduced bound circles of A, B, and
C obtained using Equation 3. The reduced intersection area
R is the solid-hatched brown area. Hence the C ′

is result



in a reduction in the intersection region, thus reducing the
uncertainty in localizing the WD. As shown in the figure,
the enclosing circle obtained when our technique is used
is significantly smaller than that obtained otherwise. This
illustrates the effectiveness of our technique.

Algorithm 1 Algorithm for reducing the size of R
1: INPUTS: Position ai of the anchors in range of the WD

and their estimates r̂iε, i = 1, . . . , n.
2: OUTPUTS: CB(xB , yB , rB), the enclosing circle of R;
3: for i = 1 to n do
4: r̂′iε = r̂iε/{(1 + δmax)(1 + εmax)}; {Reduced bound

circles}.
r̂iε = r̂iε · (1 + δmax); {Ensures R 6= φ}.

5: end for
6: INITIALIZATION: C = {Ci(xi, yi, r̂iε)| Ci = bound

circle of ai}; C′ = {C ′

i(xi, yi, r̂
′

iε)| C ′

i = reduced
bound circle of ai}, i = 1, . . . , n.

7: OBTAIN: VCC = {x| x is a point of intersection of
Ci, Cj ∈ C}; VC′C′ = {x| x is a point of intersection
of C ′

i, C
′

j ∈ C′}; VCC′ = {x| x is a point of intersection
of Ci ∈ C, C ′

j ∈ C}; i, j = 1, . . . , n.
8: Vall =VCC∪ VC′C′∪ VCC′ ; {all intersection points}
9: V = {x| (x ∈ Vall) ∧ (x ∈ ∩n

i=1
Ci \ ∪

n
i=1

C ′

i};
10: V’ = φ;
11: Call = C ∪ C′;
12: for each C ∈ Call do
13: for each pair of intersection points (xl, xm) on C do
14: Bisect the chord formed by (xl, xm), the inter-

section points on C, by the perpendicular bisector
from the center of C;

15: Extend the bisector to intersect C at points xp and
xq;

16: if {xp ∈ ∩n
i=1

Ci \ ∪
n
i=1

C ′

i} then
17: V’ = V’∪{xp};
18: end if
19: if {xq ∈ ∩n

i=1
Ci \ ∪

n
i=1

C ′

i} then
20: V’ = V’∪{xq};
21: end if
22: end for
23: end for
24: V = V ∪ V’;
25: Find the smallest circle CB(xB,yB, rB), such that

‖ x − xB ‖≤ rB ∀x ∈ V.
26: return CB(xB , yB, rB);

Algorithm 1 presents our technique. Lines 3 to 5 perform
the reduction of the distance estimates to obtain the reduced
bound circles and also the dilation of the distance estimates
to ensure that negative errors do not result in R = φ.
Line 6 performs the initialization of the sets C and C’ that
contain the bound circles and the reduced bound circles,
respectively, of the anchors in range of the WD. Line 7
obtains the set of all intersection points of any pair of
bound circles. Line 9 obtains V, the set that contains all the
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intersection points or vertices inside the intersection region
R. Lines 12 to 23 handle the special case where even though
CB contains all the vertices in R it is unable to enclose R
completely. Fig. 4 provides an illustration of this special
case. In the figure, there are three bound circles, A, B, and
C. V = {a, b}, is the set of vertices of R, with both A and
B intersecting at the two points. However, the smallest circle
containing both a and b (green circle in dot-dot-dash) does
not enclose R. This is because it bounds only the minor
arc ab

_
of B and not the major arc ab

_
of A, which are the

two bounding arcs of R, and hence does not enclose R
completely. It is easy to see that the smallest circle that
contains all the bounding arcs of the region R (minor ab

_

of B and major ab
_

of A in this instance), encloses R as
well. To make sure all the arcs bounding R are contained
inside the smallest enclosing circle, lines 12 to 23 add to
V, all the center points of the arcs, obtained using the end
points of the arcs, that is, the vertices of R. For instance,
in Fig. 4 points d and c are added as follows. Line fe is
the perpendicular bisector of the chord ab. fe intersects the
minor arc ab

_
of B at d and the major arc ab

_
of A at c.

Thus, due to fe the set V becomes V = {a, b, c, d}, and
the set of arcs becomes, S = {ac_, cb

_
, bd
_

, da
_
}; set S will

never contain a major arc. We note here that the radius
(rB) of the smallest circle (CB) enclosing R satisfies the
inequality, rB ≤ min{r̂iε, i = 1, . . . , n}.This is because
the smallest bound circle encloses R also. In the figure,
the smallest circle that contains V is circle A, hence using
Lemma 1, we can say that A also contains S (S ∈ A),
and is the enclosing circle CB of R. If S /∈ CB , then
there exists an arc {xy_| (xy_ ∈ S) ∧ (xy_ /∈ CB)}. Let xy_

be a part of a bound circle CX , then xy_
X > xy_

B , hence
rB > rX from Lemma 1, where rB is the radius of CB

and rX the radius of CX . This contradicts the condition,
rB ≤ min{r̂iε, i = 1, . . . , n}, hence S ∈ CB . If points x
and y are inside CB , then Lemma 1 still applies to the arc
formed by the points of intersection of xy_ with CB .

Lemma 1: Let two circles C1 and C2 with radius r1 and
r2 respectively, intersect at two points p and q. Let the minor
arc corresponding to C1 be pq_

1
and that corresponding to



C2 be pq_
2
. If pq_

1
≥ pq_

2
, then r1 ≤ r2. Also if r1 ≥ r2,

then pq_
1
≤ pq_

2
.

Proof: We will prove this by contradiction. Let us
assume that r1 > r2, then the line C1C2 joining the centers
of C1 and C2 and bisecting chord pq intersects C2 at two
points, say l and m, where m is the point on the major arc
pq_

2
. m should be inside C1 as r1 > r2. This implies that

C2 intersects C1 at 4 non-collinear points (p and q being 2
of them). According to the properties of circles, only one
unique circle can pass through three or more non-collinear
points. Thus C1 and C2 are the same circle, this implies
that r1 = r2, which is a contradiction. Thus we prove that
r1 ≤ r2. Since pq_

1
≥ pq_

2
, thus pq_

2
∈ C1. Using negation,

∼ (pq_
1
≥ pq_

2
=⇒ r1 ≤ r2), we have, r1 ≥ r2 =⇒

pq_
1
≤ pq_

2
.

Line 25 finds the smallest circle that encloses R and hence
the set V within it. The center (xB , yB) is the estimate of
the WD’s position, while CB is the uncertainty region, with
rB being its radius. Theorem 1 proves that in the worst case
the size of the enclosing circle obtained by our technique is
as big as that obtained when our technique is not used.

Theorem 1: Let R′ be the region of intersection of the
bound circles and R the region of intersection when the
reduced bound circles are also used in localization. If rB is
the radius of the smallest circle (CB) enclosing R and r′B
is the radius of the smallest circle (C ′

B) enclosing R′, then
rB ≤ r′B .

Proof: Let Pi = {x| ‖ x−ai ‖≤ r̂iε}, where r̂iε is the
bound circle of ai and P ′

i = {x| ‖ x−ai ‖< r̂′iε} where r̂′iε
is the reduced bound circle of ai, then R′ = {x|x ∈ R2, x ∈
∩n

i=1
Pi} and R = {x|x ∈ R2, x ∈ {∩n

i=1
Pi \∪

n
i=1

P ′

i }}, so
R ⊆ R′. Thus, C ′

B also bounds R, hence rB ≤ r′B .

The running time of line 7 of Algorithm 1 is O(3n2),
where n is the number of anchors in range of the WD.
Running time of line 8 is O(3n2), of line 9 is O(2n3), and
of lines 12 to 23 is O(n2). The smallest circle enclosing
R can be obtained using the prune and search technique
proposed by Nimrod Megiddo [11], hence the running time
of line 25 is O(n2). Hence the total running time of the
algorithm is O(n3).

V. SIMULATION RESULTS

The WN is deployed in a square field of dimensions
100 × 100 m2. A given number of anchors are deployed
randomly in range of the WD, positioned at a random
location in the network. The transmission range of the
anchors is set to 30m and the location reference broadcast
period is set to 1 second. The maximum error proportion was
chosen to be |δmax| = 0.1, and the maximum NLOS error
proportion was chosen as, εmax ∈ [0.2, 0.6] for illustration.
The value of δmax is representative, while that of εmax helps
demonstrate the effectiveness of the scheme. The number
of anchors (n) in range of the WD is between 3 to 7.
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Fig. 5. 5(a), 5(b), and 5(c): Error, radius and percentage difference with
different NLOS anchors given 5 anchors in range, ε = 0.4. 5(d), 5(e)
and 5(f): Percentage difference, error, and radius with different anchors in
range, ε = 0.4.

For each configuration of n, we vary the number of NLOS
anchors from 0, . . . , n. For each configuration of ε, n, and
number of NLOS anchors, we run the simulation for 50
runs and obtain the average, maximum, and minimum values
of the performance parameters. We study two performance
parameters: the measurement error (err), which is the error
in estimating the true position of the WD by the center of
the circle CB enclosing R, and the radius rB of CB . The
measurements are normalized using the RMS distance value,

r̂ =
√

( 1

n

∑n

i=1
r̂2

iε). In the figures, we refer to the standard
technique that does not use the reduced circles as the Big,
while our technique is referred to as the Red (reduced).

Fig. 5 illustrates some of the results of the simulations.
In Fig. 5(a), we study the normalized error in measurement,
given that some of the anchors, out of 5 anchors in range
of the WD, are subjected to NLOS measurements. As can
be seen the average normalized error when our technique
is used is lesser than when localization is done using the
standard technique. The error is reduced by 60% in the best
case. Also, the error increases slowly in comparison to the
Big technique. This is an encouraging result. The maximum
and minimum errors also are no more than in the Big case.



TABLE I

RESULTS OF SIMULATION WITH ε

ε Measurement Error (err) Radius (rB) % Difference in radius
Average Maximum Minimum Average Maximum Minimum Average Maximum Minimum

Big Red Big Red Big Red Big Red Big Red Big Red
0.2 0.178 0.091 0.99 0.99 0.0007 0.002 0.24 0.15 1.0 1.0 0.01 0.01 37.5 94.73 0.0
0.3 0.19 0.11 0.99 0.99 0.001 0.001 0.26 0.175 1.0 1.0 0.004 0.002 32.7 91.86 50.0
0.4 0.19 0.13 0.998 0.99 0.002 0.002 0.26 0.19 1.0 1.0 0.01 0.01 26.9 88.25 0.0
0.5 0.21 0.147 0.99 0.99 0.001 0.001 0.285 0.216 1.0 1.0 0.01 0.01 24.2 87.44 0.0
0.6 0.17 0.09 0.97 0.93 0.0008 0.0008 0.245 0.161 1.0 1.0 0.0086 0.0086 33.3 92.94 0.0

The cases where the maximum error of the Red technique
correspond to the Big technique are those in which there is
no reduction in R as a result of the reduced circles. Fig. 5(b)
shows the maximum, minimum, and average normalized
radius of CB . Here as well, Red performs better than Big.
Also the average normalized radius does not increase as fast
as in the Big technique with increase in NLOS anchors and
the maximum normalized radius in Red is no more than that
in Big. Thus the average case performance of Red is better
than Big while the worst case performance is no worse than
Big. Fig. 5(c) shows the maximum, average, and minimum
percentage difference between the radii obtained in the Big
and Red techniques over 50 simulation runs. For all NLOS
anchors configuration the normalized radius obtained by
Red is at least 70% lesser than the radius obtained by Big
in the best case, illustrated as maxPerDiff. In the average
case the decrease is anywhere between 20% to 42%, with
the percentage increasing with increase in NLOS anchors,
which is a desirable property.

In Figs. 5(d)–5(f) we compare the performance of Big to
Red for a different number of anchors. The results are taken
over all configurations of NLOS anchors for each value of
n. Fig. 5(d) shows the percentage difference between the
radii obtained in the Red and Big techniques. The difference
increases with the increase in the number of anchors. This is
because with the increase in number of anchors the number
of reduced bound circles increases thus resulting in greater
decrease in area. The radius and the measurement errors also
decrease for the same reason, as illustrated in 5(e) and 5(f)
respectively.

Table I illustrates the measurement error, radius rB , and
the percentage difference in rB between Big and Red, for
different values of the NLOS proportion ε. Our technique
performs better than Big for all values of ε on an average
case. rB in Red is atleast 25% lesser than rB in Big. In the
best case, rB is as atleast 87% lesser than rB in Big. In the
statistic of measurement error as well, on an average Red
has 40% lesser error than Big, and at least 80% lesser error
in the best case. The results demonstrate the effectiveness of
our technique in reducing R and decreasing the estimation
error. As the value of ε increases the performance of the Red
scheme approaches that of the Big scheme as the reduction
in R becomes less. After a certain value of ε, there will be
no reduction in R. As proved in Theorem 1, the performance
of the Red will be the same as Big.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a simple technique that
improves the accuracy of localization in the presence of
NLOS measurement errors. In the future, we would attempt
to improve the performance of our algorithm by increasing
the size of the pessimistically chosen reduced bounds and
also compare our technique with other existing schemes to
demonstrate its usefulness.
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