Let D be a domain and K its quotient field, then the group of divisibility of D is the group of non-zero principal fractional ideals of D. This is a partially ordered group with respect to the ordering defined by $x D \leq y D$ if and only if $y D \subseteq x D$ for all $x, y \in K^*$. The Krull-Kaplansky-Jaffard-Ohm Theorem states that given an l-group G, there exists a Bézout domain, whose group of divisibility is order isomorphic to G. In this talk, we’ll discuss the partially ordered groups that occur as a group of divisibility of an integral domain.