New Results on the Asymptotic Behavior of Solutions to Some Second Order Nonhomogeneous Difference Equations

Behzad Djafari Rouhani
Department of Mathematical Sciences, University of Texas at El Paso,
500 W. University Ave., El Paso, TX 79968 USA.
E-mail address: behzad@math.utep.edu

Abstract

We investigate the asymptotic behavior of solutions to the following system of second order nonhomogeneous difference equation:

\[
\begin{cases}
 u_{n+1} - (1 + \theta_n)u_n + \theta_n u_{n-1} & \in c_n Au_n + f_n & n \geq 1 \\
 u_0 = x, & \sup_{n \geq 0} |u_n| < +\infty
\end{cases}
\]

where \(A \) is a maximal monotone operator in a real Hilbert space \(H \), \(\{c_n\} \) and \(\{\theta_n\} \) are positive real sequences and \(\{f_n\} \) is a sequence in \(H \). We show the weak and strong convergence of solutions and their weighted averages to an element of \(A^{-1}(0) \), which is the asymptotic center of the sequence \(\{u_n\} \), under appropriate assumptions on the sequences \(\{c_n\} \), \(\{\theta_n\} \) and \(\{f_n\} \). Our results continue our previous work in [13,17], by presenting some new results on the asymptotic behavior of solutions, including in particular a completely new strong convergence result, and extend some previous results by Apreutesei [3,4], Morosanu [26] and Mitidieri-Morosanu [22] to the nonhomogeneous case and without assuming \(A \) to have a nonempty zero set.