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Introduction
Conformant planning is the problem of computing a se-
quence of actions that achieves a goal in presence of in-
complete information about the initial state (Smith and Weld
1998). Recent research shows that conformant planning
could be very useful in the construction of finite-state con-
trollers (Bonet, Palacios, and Geffner 2009) and in contin-
gent planning (Albore, Palacios, and Geffner 2009). One
of the most difficult issues, that directly affects the perfor-
mance and scalability of conformant planners, is the size
of the initial belief state—which is often exponential in the
number of object constants of the problem. We observed that
in many problems drawn from the recent International Plan-
ning Competitions (IPC) and from the literature, the initial
belief states of many large instances contain more than 210

states, creating challenges to existing conformant planners.
Various techniques have been developed to deal with the

potentially huge size of the belief state. Some planners em-
ploy a compact representation of belief states—e.g., CFF
(Brafman and Hoffmann 2004), POND (Bryce, Kambham-
pati, and Smith 2006), CNF (To, Son, and Pontelli 2010).
Other planners develop simplification techniques that can
reduce the size of the initial belief state, sometimes by sev-
eral orders of magnitude—as in CPA (Tran et al. 2009) and
DNF (To, Pontelli, and Son 2009). Most of these planners
search for solutions in the belief state space. An alterna-
tive approach has been proposed in (Castellini, Giunchiglia,
and Tacchella 2001) and (Kurien, Nayak, and Smith 2002),
where the conformant planning problem is viewed as a set
of sub-problems, which are classical planning problems, and
solutions are computed using a two-step approach.

CPLAN, developed in (Castellini, Giunchiglia, and Tac-
chella 2001), starts by computing a solution for a sub-
problem, called a possible plan, using a SAT-planner. It then
checks whether the possible plan is a solution of the original
problem. If it is not, the possible plan is discarded, a new
possible plan is generated, and the process continues.

FRAG-PLAN, proposed in (Kurien, Nayak, and Smith
2002), follows a slightly different approach in computing
plans. It begins with the computation of a possible plan and
then attempts to extend it to a valid plan. During the ex-
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tension phase, FRAG-PLAN assumes that a conformant plan
for k initial states has been found, selects fragments of this
plan, and uses them as the seed to find a conformant plan for
k + 1 sub-problems where k = 1, 2, . . . , n − 1 and n is the
size of the initial belief state. The main concern in FRAG-
PLAN is the potentially huge number of backtracking steps
that need to be performed. We refer to the approach used
in FRAG-PLAN as generate-and-extend. The experimental
evaluation in (Kurien, Nayak, and Smith 2002) shows that
both planners work well in some domains, but their cover-
age is limited, and both planners do not scale up well.

In my thesis, I propose an alternative approach to the
generate-and-extend approach of (Kurien, Nayak, and Smith
2002). I refer to the new approach as generate-and-
complete. The approach is similar to generate-and-extend,
as it first generates a possible plan for a sub-problem and
then uses it to construct a valid plan by considering other
initial states. In the second phase, my approach repairs the
possible plan, whenever necessary, to create a possible plan
for other sub-problems, one-by-one. The possible plan for
the last sub-problem will be checked for being a valid con-
formant plan. If it is not a solution, a new possible plan for
the first sub-problem is generated and the completion pro-
cess restarted. The key difference between my approach and
the approach of FRAG-PLAN lies in that my approach does
not fragment a possible plan when it is not necessary, and
it does not attempt to incrementally compute a conformant
plan for a subset of all subproblems in each iteration. Fur-
thermore, my approach employs the one-of-combination
technique described in (Tran et al. 2009) to reduce the num-
ber of possible initial states that need to be considered.

My thesis also aims at investigating the application of dif-
ferent techniques from classical planning, such as landmark
and abstraction, to conformant planning. My goal is to iden-
tify methods of using landmarks and stratification to trans-
form a conformant planning problem into an “easier” prob-
lem, ideally a classical problem, that can be dealt with ef-
ficiently by state-of-the-art conformant planners or classical
planners. To achieve this goal, I propose the notion of a vi-
able landmark as a belief state and discuss the complexity
of the problem of checking whether or not a belief state is a
viable landmark. To address the computational challenge of
the problem, I propose to approximate viable landmarks and
develop an algorithm for computing these approximations.



Conformant Planning Problem
A conformant planning problem P is specified by a tuple
〈F,O, I,G〉, where F is a set of propositions, O a set of
action descriptions, I a set of formulae describing the initial
state of the world, and G a formula describing the goal.

A literal is a proposition p ∈ F or its negation ¬p. ¯̀

denotes the complement of the literal `—i.e., ¯̀= ¬`, where
¬¬p = p for p ∈ F . For a set of literals L, L = {¯̀ | ` ∈ L},
and L is often used to represent ∧`∈L`.

A set of literals X is consistent if there exists no p ∈
F such that {p,¬p} ⊆ X . A state s is a consistent and
complete set of literals, i.e., s is consistent, and for each
p ∈ F , either p ∈ s or ¬p ∈ s. A belief state is a set of
states. A set of literals X satisfies a literal ` (resp. a set of
literals Y ) iff ` ∈ X (resp. Y ⊆ X).

Each action a in O is associated with a precondition,
denoted by pre(a), and a set of conditional effects of the
form ψ → ` (denoted by a : ψ→`), where pre(a) and
ψ are sets of literals and ` is a literal. We often write
a : ψ → `1, . . . , `k as a shorthand for the set {a : ψ →
`1, . . . , a : ψ → `k}.

The initial state I is a set of literals, one-of clauses (each
of the form one-of(ψ1, . . . , ψn)), and or clauses (each of
the form or(ψ1, . . . , ψm)), where each ψi is a set of literals.

A set of literals X satisfies the one-of clause
one-of(ψ1, . . . , ψn) if there exists some i, 1 ≤ i ≤ n, such
that ψi ⊆ X and for every j 6= i, 1 ≤ j ≤ n, ψj∩X 6= ∅. X
satisfies the or clause or(ψ1, . . . , ψm) if there exists some
1 ≤ i ≤ m such that ψi ⊆ X .

By ext(I) we denote the set of all states satisfying every
literal in I , every one-of clause in I , and every or clause
in I . E.g., if F={g, f, h} and I={or(g, h), one-of(f, h)}
then ext(I) = {{g, h,¬f}, {g,¬h, f}, {¬g, h,¬f}}.

The goal G is a collection of literals and or clauses.
Given a state s and an action a, a is executable in s if

pre(a) ⊆ s. A conditional effect a : ψ → ` is appli-
cable in s if ψ ⊆ s. The set of effects of a in s, de-
noted by ea(s), is defined as: ea(s) = {` | a : ψ →
` ∈ O is applicable in s}. The execution of a in a state s
results in a successor state succ(a, s), where succ(a, s) =

(s ∪ ea(s)) \ ea(s) if a is executable in s, and succ(a, s) =
failed, otherwise. Using this function, we define ŝucc for
computing the state resulting from the execution of a se-
quence of actions α = [a1, . . . , an]: ŝucc(α, s) = s if
n = 0; ŝucc(α, s) = succ(an, ŝucc([a1, . . . , an−1], s)) if
n > 0; and ŝucc(γ, failed) = failed for any sequence
of actions γ. For a belief state S and action sequence α,
let ŝucc∗(α, S) = {ŝucc(α, s) | s ∈ S} if ŝucc(α, s) 6=
failed for every s ∈ S; and ŝucc∗(α, S) = failed, other-
wise. α is a solution of P iff ŝucc∗(α, ext(I)) 6= failed and
G is satisfied in every state belonging to ŝucc∗(α, ext(I)).

GC[Ω]—A Generate-And-Complete Approach
Intuition
In this section, we present the basic idea behind GC[Ω].
First, we introduce the notion of a sub-problem.
Definition 1. Let P = 〈F,O, I,G〉 be a conformant plan-
ning problem. For each s ∈ ext(I), the planning problem

P (s) = 〈F,O, s,G〉 is a sub-problem of P . A solution of a
sub-problem P (s) of P is called a possible plan of P .

It is easy to see that, for every s ∈ ext(I), the problem
P (s) is a classical planning problem. The following obser-
vation is an obvious consequence of the definition of a solu-
tion of a conformant planning problem.
Observation 1. Let P = 〈F,O, I,G〉 be a conformant
planning problem and P (s) be a sub-problem of P . Then,
every solution of P is also a solution of P (s).

This property has been used in the development of CPLAN
(Castellini, Giunchiglia, and Tacchella 2001) and FRAG-
PLAN (Kurien, Nayak, and Smith 2002). In essence, CPLAN
uses Algorithm 1.
Algorithm 1 CPLAN(P)

1: Input: A planning problem P = 〈F,O, I,G〉
2: Output: A solution for P
3: repeat
4: Compute a possible plan α of P
5: if α is a solution of P then
6: return α
7: end if
8: until every possible plan of P has been considered
9: return failed

The authors of FRAG-PLAN observed that CPLAN imme-
diately eliminates a possible plan α of P from consideration
when it is not a solution of P , indicating that the action se-
quence is “useless”—nevertheless, there might be fragments
of α that are useful. This led to the development of FRAG-
PLAN, which tries to use several possible combinations of
fragments of α to construct a solution before dismissing α
as useless. While the idea seems reasonable, the approach
has some issues of its own. First, the extension phase needs
to decide which combinations of fragments should be used.
Second, backtracking is required whenever the current com-
bination is deemed not promising. This is problematic, since
the number of possible combinations of fragments of an ac-
tion sequence is exponential in its size (or in the length of
the plan).

In my thesis, I propose a compromise between the ap-
proaches of FRAG-PLAN and CPLAN—I employ the two
phases of FRAG-PLAN but simplify its extension phase by:
• Considering the possible plan as a single fragment when

the extension phase starts; and
• Extending the possible plan to generate a new possible

plan for other initial states.
The first item removes the burden of having to decide which
fragments should be used and what is the order among them
(reducing backtracking). This also avoids the rigidity of
FRAG-PLAN, that imposes a fixed ordering among frag-
ments in the newly generated plan, and thus requires back-
tracking when the placement of the fragments is not suitable
even though the fragments are useful. The second item re-
laxes the requirement of immediately generating a confor-
mant plan—by focusing instead on possible plans for the
various initial states.
Example 1. Consider the problem

P = 〈{f, p, q, r, h}, O, I, {h}〉



where

O =

{
a : >→p, r b : >→q,¬f
c : >→¬f,¬q, r k : >→h

}
with pre(a) = {q}, pre(b) = {f}, pre(c) = {f, q}, and
pre(k) = {r}; and

I = {one-of(q,¬q),¬p,¬r, f,¬h}.

Here, ext(I) = {s0, s1} with s0 = {q,¬p,¬r, f,¬h} and
s1 = {¬q,¬p,¬r, f,¬h} (> stands for true).

Let us assume that s0 is selected to start the search for a
solution. Let us consider two scenarios:
• The possible plan α1 = [a; k] is generated. α1 is not a

solution of P because it is not a solution of P (s1). Thus,
we will attempt to find a solution for P (s1) which has
α1 as a subsequence. This is done by executing α1 from
s1. Since pre(a) is not satisfied in s1, we would like to
find a plan that achieves pre(a) from s1. This process
yields [b]. If we insert b before a, we obtain the sequence
β = [b; a; k] which is executable in s1. Incidentally, β
is also a solution of P (s1)—i.e., β is a possible plan of
P (s1).
A validity test reveals that β is indeed a solution of P , and
no other possible plans need to be explored.
• Let us assume that α2 = [c; k] is generated instead. We

can easily check that α2 is not a solution of P , since it
is not a solution of P (s1). Again, we will try to create a
solution for P (s1) which has α2 as a subsequence. Simi-
larly to the previous scenario, we would like to find a plan
that achieves pre(c) from s1. This will be unsuccessful,
since the only action that can generate q, a precondition
of c, is action b. However, b will make f false, and there
is no action that can generate f . We can quickly dismiss
α2 and request another possible plan of P (s0). 2

Formalizing the Algorithm
The high-level idea of our approach, as discussed above, re-
lies on searching for a conformant plan by inserting actions
into a possible plan. The two critical issues are: (i) where
to insert an action or an action sequence; and (ii) how to
determine them. This section will address these issues.

In order to describe the overall algorithm, we need to in-
troduce some additional notation. By reduct(P ) we denote
the set of initial states obtained by applying the one-of-
combination technique of (Tran et al. 2009). We note that
this technique helps in reducing the size of the initial belief
state for several conformant planning problems.

Our algorithm has two parameters—the classical planner
used to compute possible plans, denoted by Ω, and the con-
formant planning problem P . Observe that all state-of-the-
art sound and complete classical planners have the follow-
ing properties: they return (a) One or some solutions of the
problem if the problem is solvable; (b) Failed if the problem
is unsolvable. As such, we can assume that Ω is a sound and
complete classical planner. For the sake of simplicity, we de-
note with Ω(X) the set of solutions of the planning problem
X returned by Ω; Ω(X) = {failed} if X is unsolvable.

Algorithm 2 GC[Ω](P )

1: Input: A planning problem P = 〈F,O, I,G〉
2: Output: A solution for P
3: Let Σ = [s0, . . . , sn] = reduct(P )
4: {Compute the set of initial states }
5: {that need to be considered}
6: Compute Sol = Ω(P (s0))
7: if Sol = {failed} then
8: return failed
9: end if

10: while Sol 6= ∅ do
11: Select αs0 ∈ Sol {Obtain a solution of P (s0)}
12: if αs0 is a solution of P then
13: return αs0
14: else
15: β = completion(αs0 , P,Σ, 1)
16: if β is a solution of P then
17: return β
18: end if
19: end if
20: Sol = Sol \ {αs0}
21: end while
22: return unknown

At first sight, Algorithm 2 is fairly similar to Algorithm 1.
However, they differ in three key aspects. First, Algorithm 2
considers only a subset of all possible initial states when-
ever possible (Line 3), i.e., when the one-of-combination is
applicable for problem P . Second, it attempts to construct
a possible plan for other initial states in the reduced set of
initial states (Line 15). Third, it repeatedly requests for a
possible plan from the same initial states. Algorithm 2 dif-
fers from the algorithm in FRAG-PLAN in its key step, Line
15, where a new possible plan is constructed.

Intuitively, the algorithm explores the solution space of
sub-problem P (s0) of P ; each plan αs0 of P (s0) is con-
sidered (Line 11) and an attempt is made to “repair” it,
so that it becomes a plan for other subproblems P (si),
si ∈ reduct(P ). It returns failed if Ω indicates that P (s0) is
not solvable. The procedure completion(α, P,Σ, Index),
executed in Line 15, is the actual algorithm that encodes the
process of completing the action sequence α into a potential
solution of P , as described in Examples 2-??. If the com-
pletion fails, another solution for P (s0) is considered and
the process repeated. The algorithm returns unknown if it
cannot generate a solution.

The procedure completion(α, P,Σ, Index) is described
in Algorithm 3. Its parameters are the conformant planning
problem P , whose initial belief state, represented as a list, is
Σ = [s0, . . . , sn], a solution α of P (s0), and an index used
to guide the start of the completion process. The procedure
attempts to create solutions αsi for P (si), i = 1, . . . , n.

For each iteration of the for-loop in Lines 5–27, the algo-
rithm constructs a solution of the sub-problem P (si) from
the solution αsi−1

of P (si−1), by inserting actions into
αsi−1 . To achieve this, the algorithm starts with the state
si (Line 7) and an empty plan and considers each action a in
αsi−1 (Lines 9–21):

• Task 1: inserts a sequence of actions before a (loop 9–



Algorithm 3 completion(α, P,Σ, Index)

1: Input: α–a solution of P (s0)
P = 〈F,O, I,G〉–conformant planning problem
Σ = [s0, . . . , sn]–list of initial states of P
Index–the index for starting the completion

2: Output: A possible solution for P
3: Let αsIndex−1

= α
4: Initialize αsi = [] for i = Index, . . . , n
5: for i = Index to n do
6: {completion of α for the states sIndex, . . . , sn}
7: s = si {current state}
8: Assume that αsi−1 = [a0, . . . , alast]
9: for j = 0 to j = last do

10: tGoal = pre(aj) {create a temporary goal}
11: if tGoal = ∅ then
12: E = {aj : ψ → l | aj : ψ → l ∈ O is

applicable in ŝucc([a0, . . . , aj−1], si−1)}
13: tGoal = tGoal ∪ (

⋃
[aj :ψ→l]∈E ψ)

14: end if
15: γ ∈ Ω(〈F,O, s, tGoal〉)
16: if γ = failed then
17: return failed
18: end if
19: αsi = αsi ◦ γ ◦ [aj ] {update current plan}
20: s = succ(aj , ŝucc(γ, s)) {update current state}
21: end for
22: δ ∈ Ω(〈F,O, s,G〉)
23: if δ = failed then
24: return failed
25: end if
26: αsi = αsi ◦ δ {update current plan}
27: end for
28: return αsn

21), so that (1) a is executable and (2) the execution of a
maintains the effects of a if pre(a) = ∅, i.e., a is always
executable. To achieve this, the algorithm creates a tem-
porary goal (tGoal) and modifies it accordingly (line 10)
and (lines 11–14).
There are two reasons behind this task. First, most clas-
sical planners are fairly sophisticated and do not generate
redundant actions. As such, the existence of a in αsi−1

is
(almost always) necessary for achieving the goal in si−1;
thus, its effects need to be maintained for the final plan to
be a conformant plan. Second, planning from the current
state s to achieve tGoal is expected to be significantly
simpler compared to planning to achieve the final goal
from s.

• Task 2: makes sure that the final sequence of actions αsi
achieves the goal of P (si) (Line 22)—and this may re-
quire adding extra actions at the end of αsi .

Observe that each αsi is a solution of P (si) but it is possi-
ble that none of the αsi is a solution of P . This due to the
fact that the insertion of actions into αsi−1

does not guaran-
tee that αsi remains a solution of P (si−1). This is also the
reason why Algorithm 2 includes the test in line 16.

On Improving Conformant Planners by
Analyzing Domain-Structures

Viable Landmarks in Conformant Planning
In this section, we define the notion of a viable landmark for
conformant planning problems. By definition, the search for
a conformant plan is done in the space of belief states. A
straightforward generalization of a landmark to conformant
planning would be a literal which is true in one of the belief
states generated during the execution of any solution from
the initial belief state. This is quite restrictive though.

Example 2. Consider P = 〈{f, g, h}, O, I, {h}〉 where
I = {one-of(f, g), one-of(h,¬h)} and O contains
a : f,¬g→¬f,¬g; a : ¬f, g → f, g; b : ¬f,¬g → h;
b : f, g → h; c : f → ¬f ; and c : g → ¬g. Furthermore,
pre(a) = pre(b) = pre(c) = >.

It is easy to see that [a, b] is a solution of P . Yet, there ex-
ists no literal ` different from h that is true during the execu-
tion of [a, b]. In other words, this problem has only a trivial
landmark, h, according to the proposed generalization.

It is also easy to see that [c, b] is another solution of P
in Example 2 and for every state s ∈ succ∗(c, ext(I)),
¬f ∈ s, and ¬g ∈ s. In other words, the uncertainty with
regards to the clause one-of(f, g) has been removed from
succ∗(c, ext(I)). Moreover, succ∗(c, ext(I)) has fewer el-
ements than succ∗(a, ext(I)). This means that for confor-
mant planners employing the cardinality heuristic, the solu-
tion [c, b] is likely to be returned as the first solution of P .
This motivates us to define the notion of a viable landmark
for a conformant problem as a belief state which (i) can eas-
ily be reached or predicted; and (ii) from which there is a
sequence of actions that reaches the goal. In the above ex-
ample, succ∗(c, ext(I)) would be a viable landmark, which
can be reached by the sequence [c] and from which there is
the sequence [b] that reaches the goal. Let us formalize these
ideas.

Definition 2. Let S be a belief state, Ω be a belief state, and
o be an one-of clause. We say that S is a convergent point of
Ω for o, denoted by Ω ; S[o], if for every literal ` appearing
in o, S |= ` or S |= `, and for every state s ∈ Ω, there exists
an action sequence αs such that ŝucc(αs, s) ∈ S.

In Example 2, succ∗(c, ext(I)) is a convergent point of
ext(I) for one-of(f, g). A convergent point is only useful
for the search of a solution if there exists a action sequence
α that leads to this point from all possible initial states. We
therefore define the notion of an abstract point as follows.

Definition 3. Let S be a belief state, Ω be a belief state, α
be an action sequence, and o be an one-of clause. We say
that S is an abstract point of Ω for o w.r.t. α, denoted by
Ω

α
; S[o], if Ω ; S[o] and ŝucc∗(α,Ω) ⊆ S.
We call α an abstract path for o from Ω to S. S is an

abstract point of Ω for o if there exists an action sequence α
such that Ω

α
; S[o].

We have that ext(I)
[c]
;succ∗(c, ext(I))[one-of(f, g)] for

Example 2. The following proposition holds.



Proposition 1. Let S be a belief state, Ω be a belief state,
α be an action sequence, and o be an one-of clause. Then,
Ω

α
; S[o] implies Ω

α
; ŝucc

∗
(α,Ω)[o].

We will often say that α is an abstract path for a planning
problem P = 〈F,O, I,G〉 if there exists an one-of-clause
o in I such that ext(I)

α
; ŝucc

∗
(α, ext(I))[o].

Definition 4. Let P = 〈F,O, I,G〉 be a conformant plan-
ning problem. A belief state S is called a viable landmark of
P if S is an abstract point of ext(I) for some one-of clause
in I and the problem P ′ = 〈F,O, S,G〉 has a solution.

It is easy to see that we achieve our stated objective of
having succ∗(c, ext(I)) as a viable landmark of P for Ex-
ample 2. The next proposition follows immediately from the
definition of a viable landmark.
Proposition 2. Let P = 〈F,O, I,G〉 be a conformant plan-
ning problem and S be a viable landmark of P . Then, there
exists an action sequence α such that for every solution β of
the problem P ′ = 〈F,O, S,G〉, α ◦ β is a solution of P .
β in Prop. 2 is referred to as a goal path w.r.t. S. Prop. 2

indicates that we could solve a conformant planning prob-
lem P = 〈F,O, I,G〉 by (i) finding a viable landmark S of
P ; and (ii) solving the problem P ′ = 〈F,O, S,G〉. Prop. 1
implies that instead of S, we can find an action sequence α
and solve the problem P ′′ = 〈F,O, ŝucc∗(α, ext(I)), G〉.
By definition of a viable landmark, we know that there
exists an one-of clauses o in I such that every literal
` in o is known to be either true or false in S (or in
ŝucc

∗
(α, ext(I))). It means that the uncertainty in o has

been removed. Observe that, in general, there is no guaran-
tee that the search for a solution from the new belief state
S (or ŝucc∗(α, ext(I))) will be easier than the search for a
solution from the initial belief state ext(I). However, if α
only changes the value of literals in o, then P ′′ is closer to a
classical planning problem than the original problem P , and
thus it could be easier than P , due to the fact that classical
planning has a lower complexity than conformant planning
(Baral, Kreinovich, and Trejo 2000).

A main obstacle in applying the above idea lies in the fact
that finding a viable landmark of P is also not a simple task.

Let RLandmark be the problem: given a conformant plan-
ning problem P = 〈F,O, I,G〉 and a belief state S, deter-
mine whether S is a viable landmark of P . Because deter-
mining whether S is a viable landmark requires checking for
a plan from S to G, the complexity of RLandmark is at least
as hard as the conformant planning problem (i.e., ΣP2 (Baral,
Kreinovich, and Trejo 2000)).

The above complexity result shows that attempting to find
an arbitrary viable landmark and using it in the search for a
solution is likely not a good idea. However, Prop. 1 implies
that a viable landmark is associated with an abstract point
and an action sequence (an abstract path). Thus, we can
approximate a viable landmark by an abstract point.

Approximating Abstract Points
We observe that for a belief state of Ω for an one-of clause,
there are two cases where we can predict the viable landmark
easily:

• The viable landmark o is one of the states in Ω.

• The viable landmark o lies outside Ω and there is a com-
mon path to reach o from every state s ∈ Ω.

Let us generalizes these two cases.

Definition 5. Let Ω = {s1, . . . , sn} be a belief state and o
an one-of clause. We say that o is closed-convergent in Ω
if there exists an si ∈ Ω and an action sequences α such
that ŝucc(α, sj) = si for every j such that 1 ≤ j ≤ n. We
say that o is open-convergent in Ω if there exist a belief state
S and an action sequence α such that ŝucc(α, si) ∈ S for
every j such that 1 ≤ j ≤ n.

In the rest of this section, we will develop a greedy al-
gorithm for identifying possible abstract points of a plan-
ning problem. Before we discuss the idea in more details,
let us introduce the following notation. For an one-of
clause o = (l1, . . . , ln), by an interpretation of o we de-
note a set of literals δ such that (i) for every literal l ∈ δ,
l ∈ lit(o) ∪ lit(o); and (ii) for each i, {li, li} ∩ δ 6= ∅ and
{li, li} \ δ 6= ∅. For a state s, let s|o = s ∩ (lit(o) ∪ lit(o)).
For a belief state Ω, let Ω|o = {s|o | s ∈ Ω}. It is easy to
see that the following holds.

Proposition 3. Let Ω be a belief state, o be an one-of
clause, and δ be an interpretation of o. If α is a plan achiev-
ing δ from Ω, then Ω

α
; ŝucc

∗
(α,Ω)[o].

Although simple, the above proposition shows that an ab-
stract point can be characterized by an interpretation of the
one-of clause in consideration. This is equivalent to say
that if the intention is to reduce the uncertainty caused by an
one-of clause o in the belief state Ω, then it is reasonable to
focus on the set of interpretations of o that could be reached
from Ω, i.e., on Ω|o and the interpretations reachable from
Ω|o. Thus, we can reduce the original domain to a domain
related to o and analyze this domain to look for an abstract
point.

Given a planning domain (F,O), the reduced domain of
(F,O) by the abstraction of o, denoted by Ab(F,O, o), is
the planning domain (F ′, O′) obtained from (F,O) where
• a:φ|o→ψ|o∈O′ iff a:φ→ψ∈O and pre(a)∪φ satisfies o;
• for each a in O′, pre(a) is changed to pre(a)|o;
• F ′ contains l iff l ∈ F and l or ¬l occurs in some condi-

tional effect in O′.
Let Ab(F,O, o) be the reduced domain of (F,O) by the ab-
straction of o. The transition graph of Ab(F,O, o), denoted
by G(o), is defined as a labeled graph (V,E) where each
δ ∈ V is an interpretations of o and (δ, a, δ′) ∈ E iff there
exits a in Ab(F,O, o) such that succ(a, δ) satisfies δ′. The
reduced graph of a belief state Ω, denoted by G(Ω, o), is
obtained by removing from G(o) every node δ that is not
reachable from a node in Ω|o and the edges coming in or
out from these nodes. Fig. 1 shows the transition graph of
Ab(F,O, o) for different simple problems. The label in a
node specifies what is true in the interpretation. Labeled
links between nodes represent actions. The dotted oval con-
tains the interpretations satisfying the one-of clause.

Observe that Defs 5 implies that an interpretation δ of o
that is reachable by every other interpretations in Ω|o is a



Figure 1: Transition Graph for Reduced Domain
candidate for being an abstract point. So, computing a can-
didate convergent point of Ω|o can be done by (i) creating
G(Ω, o); and (ii) searching for a node that is reachable from
every interpretation satisfying o. As seen in Figure 1 (left),
there could be several candidates. Furthermore, checking
reachability between the nodes is, theoretically, a computa-
tionally expensive task since the G(Ω, o) might have a num-
ber of nodes exponential in the size of the one-of clause.

To this end, we develop a greedy method for predicting of
an abstract point as follows. For an one-of clause o and a
belief state Ω, we say that o is probably closed-convergent
in Ω if for every action a in Ab(F,O, o), a maintains o, i.e..,
for every interpretation δ satisfies o, succ(a, δ) satisfies o.
Otherwise, o is probably open-convergent in Ω. We then
identify an interpretation δ in G(Ω, o) as follows.
• o is probably closed-convergent: selects δ which satisfies
o and has the minimal number of outgoing links; and

• o is probably open-convergent: selects δ which does not
satisfy o and has the maximal number of incoming links.

Result and Future Work
Both approaches, described in previous section, have been
applied in conformant planning and results in different plan-
ners that are orders of magnitude faster than state-of-the-art
conformant planners. The experimental evaluation can be
found in (Nguyen et al. 2011) and (Nguyen et al. 2012).
These results show that my planners can outperform other
planners in scalability and performance. This encourages
me to focus my research into two directions: identifying the
real-world problems that can be solved by conformant plan-
ners; and investigate on optimal conformant planning.

The first objective comes from the observation that my
conformant planners have provided significant better per-
formance and scalability when compared to other state-of-
the-art planners. Thus, applying my approaches to real-
world problems is an immediate consequence. I have ex-
perimented with the set of Finite-State Controller prob-
lems (Bonet, Palacios, and Geffner 2009). However, these
problems were created specifically to be solved using the
translation approach in t0 (Palacios and Geffner 2009). I
would like to investigate the application of the generate-
and-complete on the original Finite-State Controller prob-
lem. Similarly, as (Albore, Palacios, and Geffner 2009)
has shown that contingent planning problem can be solved
through conformant planning, I would like to extend my re-
sults to contingent planning.

As for optimal conformant planning, there has been little
effort in solving the problem optimally: to the extend of my
knowledge, the best optimal planner can only solve only 4
instances of the square center domain(Palacios, Bonet, Dar-
wiche and Geffner 2005) while my planners can solve all 31

instances non-optimally. The main reason for this result is
that conformant planners were struggling over performance
and scalability even under satisfycing plan condition. As
my approaches have overcomed these issues, the next step
is to extend these methods to optimal conformant planning.
It is worth to note that these approaches employs different
greedy strategies which trade completeness for performance.
Thus porting these techniques directly to optimal confor-
mant planning is not a good idea in general. In the short
future, I would like to identify the source of incompleteness
and develop new technique that maintain both completeness
and performance.
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