
Conformant Planning via Classical Planners

Khoi Nguyen
Computer Science Department
New Mexico State University

Las Cruces, NM 88001
Email: knguyen@cs.nmsu.edu

Advisor: Dr. Tran Cao Son

Introduction
Conformant planning is the problem of computing a se-
quence of actions that achieves a goal in presence of in-
complete information about the initial state (Smith and Weld
1998). By definition, conformant planning searches for the
plan in the belief state space. Due to the incomplete infor-
mation, the belief state usually has large size which leads to
difficulty in searching for the solution. Thus there are two
trends in developing conformant planners. The first group of
planners employ different compact representations for belief
state and develop different heuristics to guide the search in
belief state space. That can be observed in POND (Bryce
et al. 2006), CPA (Tran et al. 2009), DNF (To et al. 2009)
and CNF (To et al. 2010). The second group translate the
conformant planning problem to another equivalent problem
as can be seen in KACMBP (Cimatti et al. 2004) and t0
(Palacios and Geffner 2006). In this group, t0 has excep-
tional performance due to its approach of translating the con-
formant planning problem to classical planning problem.

The idea of using a classical planning system to solve a
non-classical planning problem has been applied to other
types of planning problems such as probabilistic planning.
FF-Replan (Yoon et al. 2007), the winner of the 2004 IPC,
solves a probabilistic planning problem by (i) translating the
problem into a classical planning problem, (ii) computing a
solution using a classical planner (FF), and (iii) replanning
whenever necessary.

It is interesting to contrast the approaches adopted in t0
and FF-Replan. While the translation employed by t0 could
produce a new problem whose size is exponential in the size
of the original one (if completeness is required), and thus
making the problem more difficult, the determinizing pro-
cess of FF-Replan simplifies the original problem by remov-
ing all information related to non-determinicity. This raises
the interesting question of whether an alternative approach
to t0, perhaps in a similar spirit to that of FF-Replan, could
produce similar results in conformant planning. It is clear
that the algorithm of FF-Replan cannot be applied to con-
formant planning, since conformant planning does not inter-
leave planning and execution.

My thesis aims at investigating the aforementioned ques-

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tion. We want to develop a new approach to conformant
planning using classical planners. We apply the method on
several benchmark and the result shows that the method is
applicable in most of these domains.

CPCL—A New Approach to Conformant
Planning

We now describe a new approach, called CPCL, which
solves a conformant planning problem by solving several
classical planning problems.

In general, a conformant planning problem can be solved
in the same manner of FF-Replan by (i) pick an arbitrary
state in the initial set of states (ii) computing a new solu-
tion for the classical problem of this state, which we often
call sub-problem, using a classical planner (FF), and (iii)
checking if the solution is also the plan for the conformant
planning problem, if yes return the solution, otherwise go
back to step (ii).

Even though this process is theoretically sound, such a
brute-force computation may not be practical for different
reasons. First, the set of solutions of the classical plan-
ning problem is generally infinite and thus generating all
solutions is impractical. Second, for efficiency and space
reasons, most state-of-the-art planners use heuristics and re-
move some parts of the search space (non-optimal planners
avoid exploring the same state twice while optimal planners
ignore paths which violate some criteria, e.g., cost of cur-
rent path is greater than an established threshold). Third, the
process ignores the relationships among the sub-problems
which are often useful in solving the problem. Hence, we
need to develop an algorithm for conformant planning using
a modification of the steps (ii)-(iii).

Let us motivate the types of modifications that need to be
done through a simple example.

Example 1. Consider the problem P = 〈{p, q, r}, O, I, r〉
where O contains a : >→p, r and b : >→q with pre(a)=q
and pre(b)=>, I = {one-of(q,¬q),¬p,¬r}. Here,
ext(I) = {s0, s1} with s0 = {q,¬p,¬r} and s1 =
{¬q,¬p,¬r}. (> stands for true)

Consider P (s0). We have that α = [a] is a solution for
P (s0). α is, however, not a solution for P (s1) and thus it is
also not a solution for P . It is easy to see that if we insert
the action b in front of a, we obtain a plan [b, a] for P (s1)



which is also solution for P .
The example shows that a problem P can be solved by

generating a solution α for one of its sub-problems and try-
ing to create a solution of P , using α as the seed, by inserting
actions to α to maintain the executability of actions in α or
to achieve the goal.

Algorithm
Alg. 1 shows the main search algorithm of the planner
CPCL. plan(X) plays the role of a classical planner that
returns a set of solutions of X . We assume that plan(X) re-
turns one solution at a time, nil if there is no more solution,
or failed if X does not have a solution. is solution(β, P )
checks whether or not β is a solution of the problem P .

Given a problem P , CPCL randomly selects a sub-
problem P (s0) of P and explores the solutions of P (s0)
generated by plan(P (s0)) (loop: line 6–11). In each itera-
tion, it checks whether αs0 , a plan for P (s0), is a solution
of P (line 7) or an attempt is made to “repair” it so that it
becomes a plan for other sub-problems P (si) (line 8).

The procedure completion(α, P,Σ, Index) (line 8) con-
structs a (possible) solution of P from the sequence α. Ba-
sically, the procedure inserts actions into the sequence of ac-
tions to maintain the executability of actions in the sequence
and the goal. This procedure is still in early design since
there are many options for maintenance: (1) maintain only
the precondition of actions (2) maintain all effects of actions
or (3) a compromise between the first two options.

If the repair fails, another plan for P (s0) is generated and
the process repeated. The algorithm returns either a solution
of P , failed to indicate that P is not solvable, or unknown
to indicate that it cannot solve the problem.
Algorithm 1 CPCL(P)

1: Input: A planning problem P = 〈F,O, I,G〉
2: Output: A solution for P
3: Let Σ = [s0, . . . , sn] = ext(I) {Compute ext(I)}
4: αs0 = plan(P (s0)) {Get a solution of P (s0)}
5: if αs0 = failed then return failed
6: while αs0 6= nil do
7: if is solution(αs0 , P ) then return αs0
8: else β = completion(αs0 , P,Σ, 1)
9: if is solution(β, P ) then return β

10: αs0 = plan(P (s0))
11: end while
12: return unknown

Preliminary result and Future work
We have developed a planner, called CPCL, and tested
it against state-of-the-art planners using the benchmarks
from the International Planning Competition 5 and the
International Planning Competition 6. The results show
that the approach is applicable in 9 out of 10 domains and
CPCL can solve most problems whenever the technique can
be applied as can be observed in Table 1. We observe that
when an appropriate strategy is used, CPCL outperforms
other planners impressively. However, the test also reveals
that if inappropriate strategy is used, the performance of
CPCL decreases drastically due to memory consumption.

Therefore, developing a strategy that is suitable for all the
domains is one of challenging tasks for my thesis.

Domain(#Instances) CPA(H) t0 DNF CPCL

blw(4) 3 3 3 4
coins(30) 20 20 20 30
comm(25) 25 25 25 25
sortnet(15) 15 9 15 15
uts(30) 30 30 30 30
uts-cycle(30) 11 7 12 15
raos-keys(30) 2 2 2 3
forest(9) 2 8 2 9
dispose(90) 66 62 89 90
Total (263) 174 166 198 221

Table 1: Number of solved problems

In the future we would like to:
1. Develop adaptable strategies for action maintenance as

described in the algorithm section.
2. Investigate the affect of the selection of s0 on the algo-

rithm and develop the heuristic to pick s0. Investigate
how different orders of states in the initial belief state af-
fect the algorithm and develop a sorting algorithm on the
set of initial states.

3. Characterize conformant planning domains that the
method can be applied.

4. Extend the algorithm to handle non-deterministic actions.
5. Adopt the method for contigent planning

References
D. Bryce, S. Kambhampati, and D. Smith. Planning Graph
Heuristics for Belief Space Search. JAIR, 26:35–99, 2006.
A. Cimatti, M. Roveri, and P. Bertoli. Conformant Plan-
ning via Symbolic Model Checking and Heuristic Search.
AIJ, 159:127–206, 2004.
H. Palacios and H. Geffner. Compiling Uncertainty Away:
Solving Conformant Planning Problems Using a Classical
Planner (Sometimes). In AAAI, 2006.
H. Palacios and H. Geffner. Compiling Uncertainty Away
in Conformant Planning Problems with Bounded Width.
JAIR, 35:623–675, 2009.
D.E. Smith and D.S. Weld. Conformant graphplan. In
AAAI, pages 889–896, 1998.
S. T. To, E. Pontelli, and T. C. Son. A conformant planner
with explicit disjunctive representation of belief states. In
ICAPS 2009, AAAI, 2009.
S. T. To, T. C. Son, E. Pontelli. A New Approach to Con-
formant Planning using CNF. ICAPS 2010.
D. V. Tran, H. K. Nguyen, E. Pontelli, and T. C. Son. Im-
proving performance of conformant planners: Static analy-
sis of declarative planning domain specifications. In PADL
2009, pages 239–253. Springer, 2009.
S.W. Yoon, A. Fern, and R. Givan. FF-Replan: A baseline
for probabilistic planning. ICAPS, 352–259. AAAI. 2007.


