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Abstract

Under seven external clustering evaluation measures, a
comparison is made for cluster representations from the
partial second order to the fourth order in data stream clus-
tering. Two external clustering evaluation measures, purity
and cross entropy, adopted for data stream clustering per-
formance evaluation in the past, penalize the performance
of an algorithm when each hypothesized cluster contains
points in different target classes or true clusters, while ig-
noring the issue of points in a target class falling into differ-
ent hypothesized clusters. The seven measures will address
both sides of the clustering performance. The represented
geometry by the partial second-order statistics of a cluster
is non-oblique ellipsoidal and cannot describe the orienta-
tion, asymmetry, or peakedness of a cluster. The higher-
order cluster representation presented in this paper intro-
duces the third and fourth cross moments, enabling the clus-
ter geometry to be beyond an ellipsoid. The higher-order
statistics allow two clusters with different representations
to merge into a multivariate normal cluster, using normal-
ity tests based on multivariate skewness and kurtosis. The
clustering performance under the seven external cluster-
ing evaluation measures with a synthetic and two real data
streams demonstrates the effectiveness of the higher-order
cluster representations.

Keywords: Data stream clustering, Cluster representation,
Cross moment, Gaussian mixture model

1 Introduction

The richness of cluster representations of unavailable
historical data constitutes the repertoire with which incre-
mental merging strategies can play in data stream cluster-
ing. Streaming data, partially due to the availability of in-
expensive sensor networks or data acquisition instruments,

are becoming an increasingly pervasive media of commu-
nications with wide applicability. Data stream clustering
attempts to detect patterns or clusters from such data. The
real-time nature of data streams makes it essential to rep-
resent historical data accurately and compactly. Traditional
data mining techniques are mainly built on the concept of
persistent data sets that are finite, static, and convenient to
process in memory. Conversely, a data stream, consisting
of temporally ordered points, is transient, continuous, and
time-stamped [2]. Thus, data stream clustering aims at sep-
arating incoming data, by computation in limited memory,
into distinct groups without using historical data, requiring
a compact and efficient intermediate form to store summary
statistics of past data. A typical data stream clustering al-
gorithm has the following characteristics: a collection, Ck,
of summary statistics is constructed to represent cluster k
from historical data; if an incoming point x or a sequence of
points is determined to be in cluster k, summary statistics Ck

will be updated with x or the sequence; if x or the sequence
is determined to be not in any existing cluster, a new clus-
ter that contains only x or the sequence will be created. To
simplify the terminology, we define two terms, cluster and
class, only for use in this paper: cluster refers to the parti-
tions found by an algorithm, and class to the partitions given
in the ground truth.

Existing data stream clustering methods have used up to
2nd-order cluster representations. The BIRCH algorithm
[13] creates an in-memory hierarchical data structure called
clustering feature (CF) tree, in which each node is a clus-
ter and its Ck includes a mean, the variances of each di-
mension, and a cluster size. The STREAM algorithm clus-
ters each chunk of the data using the LocalSearch algorithm
[11], where Ck contains a weighted center. CluStream is a
flexible framework with online and offline components [1].
The online component extends the CF node in BIRCH by
including an additional weight in Ck. The offline compo-
nent performs global clustering based on all historical sum-
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mary statistics {Ck}. DenStream [4], a density-based clus-
tering algorithm, maintains and distinguishes core micro-
clusters from outlier micro-clusters for outstanding points.
Each core micro-cluster as Ck consists of a weight, a cen-
ter and a radius. In the Single Pass K-Means algorithm [3],
Ck consists of a mean, a covariance matrix and a sample
size. So far as we know, all previous approaches represent
a historical cluster by up to the 2nd-order statistics, corre-
sponding to an ellipsoidal geometry. This paper both ex-
amines up to 4th cross moments for cluster representations,
enabling the summarization of a cluster by asymmetry and
peakedness, and forms strategies to merge two dissimilarly
shaped clusters into a multivariate normal one.

Two external clustering evaluation (ECE) measures –
purity and (cluster-based) cross entropy – have been used
for data stream clustering performance evaluation in the
past. Both reward the performance when a cluster contains
many points of the same class, while ignoring the issue of
points in one class falling into different clusters. With five
additional ECE measures – class-based cross entropy, ho-
mogeneity, completeness, V -Measure, and VI – that address
both sides, a comparison of cluster representations from the
partial 2nd order to the 4th order indicates the consistent
advantage of the 4th-order cluster representation. We eval-
uated the clustering performance as a function of window
size under the seven ECE measures with both synthetic and
real data sets to demonstrate the effectiveness of the pro-
posed higher-order cluster representation.

2 Seven External Clustering Evaluation
Measures as a Function of Memory Size

External clustering evaluation assesses the performance
of a clustering algorithm by comparing the cluster labels
with the class labels, providing more reliable [5] perfor-
mance evaluation than the internal clustering evaluation,
when ground truth is available. We will inspect the perfor-
mance of a data stream clustering algorithm by observing
an ECE measure as a function of memory limit or streaming
data window size, in order to know whether its performance
converges to the theoretical limit.

Let C be a random discrete variable taking value k in
{1, . . . ,K}, denoting the cluster label of a point. Similarly,
we define C∗, k∗, and K∗ for the class label of a point. Let
n be the sample size and nk,k∗ the number of points in both
cluster k and class k∗. We call nk,• the number of points in,
or the size of, cluster k, and analogically n•,k∗ for class k∗.
Six ECE measures to be defined use information-theoretical
concepts, which we summarize here. The entropies of C and
C∗ are given by

H(C) = −
K

∑
k=1

nk,•
n

log
nk,•
n

(1)

and

H(C∗) = −
K∗

∑
k∗=1

n•,k∗
n

log
n•,k∗

n
. (2)

The entropy is an uncertainty index of a random variable.
The conditional entropies of C given C∗ and vice versa are

H(C|C∗) = −
K∗

∑
k∗=1

n•,k∗
n

K

∑
k=1

nk,k∗

n•,k∗
log

nk,k∗

n•,k∗
(3)

and

H(C∗|C) = −
K

∑
k=1

nk,•
n

K∗

∑
k∗=1

nk,k∗

nk,•
log

nk,k∗

nk,•
. (4)

The conditional entropy is an uncertainty index of one ran-
dom variable given another. The mutual information be-
tween C and C∗ is

I(C,C∗) = I(C∗,C) =
K

∑
k=1

K∗

∑
k∗=1

nk,k∗

n
log

nk,k∗

nk,•n•,k∗
, (5)

which is a statistical dependency index between two random
variables.

Two ECE measures [14] that signify consistency of class
labels w.r.t. clusters and have been used in data stream clus-
tering are

Purity:
1
n

K

∑
k=1

max
k∗

nk,k∗ (6)

and

Cluster-based cross entropy:
1

logK∗ H(C∗|C). (7)

Purity ranges from 0 to 1: the higher the value is, the purer
the class labels in a cluster. Cluster-based cross entropy
also ranges from 0 to 1: but the lower the value, the smaller
the uncertainty of C∗ given C. Purity increases and cross
entropy decreases as classes in each cluster become more
uniform. But they are insensitive to the distribution of clus-
ters in each class, and the performance of both is likely to
improve when the number of clusters increases. To the ex-
tremity, a “perfect” clustering can be achieved by assigning
each distinct point to a unique cluster, though the clusters
could be far off from the classes. To counteract this effect,
we introduce and define

Class-based cross entropy:
1

logK
H(C|C∗), (8)

which considers clustering consistency w.r.t. classes. Class-
based cross entropy ranges from 0 to 1: the lower the value,
the smaller the uncertainty of C given C∗.

ECE measures that consider consistency of both the clus-
ter and the class labels w.r.t. each other are seeing increasing
importance in clustering. We introduce them to measure the
performance of data stream clustering specifically.
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V -Measure [12] is the weighted Harmonic mean of

Homogeneity: h =

{
1 if H(C) = 0

1− H(C∗|C)
H(C) otherwise

(9)

and

Completeness: c =

{
1 if H(C∗) = 0

1− H(C|C∗)
H(C∗) otherwise

(10)

defined by

V -Measure:
(β +1)hc

βh+ c
, (11)

where the weights of c and h are 1 and β , respectively, with
β > 0. As h and c are in [0,1] and the higher the better,
V -Measure is always non-negative and maximized to 1 if a
clustering is homogeneous (h = 1), with every cluster con-
taining points of a single class, and complete (c = 1), with
every point in a given class assigned to the same cluster.

VI, or variation of information, quantifies the informa-
tion content difference between clusters and classes. It is
defined by [10]

VI: V I(C,C∗) = H(C)+H(C∗)−2I(C,C∗). (12)

VI is non-negative: the less the value, the less information
content difference between C and C∗ and hence the better
the performance.

We summarize the seven ECE measures. Purity, cluster-
based cross entropy, and homogeneity consider the consis-
tency of class labels in each cluster. Class-based cross en-
tropy and completeness consider the consistency of clusters
in each class. V -Measure and VI combine both aspects.

ECE is designed for generic clustering algorithms. For
a data stream clustering algorithm, we study how its ECE
performance converges to its theoretical limit, i.e., the ECE
performance when memory is not limited. This translates to
investigating the ECE performance as a function of window
size or memory limit, not previously reported for studying
the performance of data stream clustering algorithms.

3 Partial 2nd-Order Cluster Representations

The most typical partial 2nd-order cluster representa-
tions used for the summary statistics Ck of cluster k in a
d-dimensional space can be summarized as

Ck =
{

μk,Σk = diag(σ2
k1, . . . ,σ

2
kd),πk

}
, (13)

where μk is a (weighted) mean vector for cluster k, corre-
sponding to the 1st moments, Σk is a diagonal matrix with
the diagonal line being (weighted) variances of each dimen-
sion for cluster k, corresponding to the 2nd moments, πk is

the total number (weight) of points in cluster k. This cluster
representation highly compactly summarizes historical data
using a non-oblique ellipsoid for each cluster.

HPStream [1] is a recent data stream clustering algo-
rithm that uses a partial 2nd-order cluster representation for
each cluster called fading cluster structure, with effective
dimension reduction and merging strategies. It utilizes an
iterative approach for incremental updating historical clus-
ters, by assigning a newly arrived point to the closest cluster
based on the Manhattan segmental distance. Each cluster
has a limiting radius. A point is added to the nearest cluster
if it lies inside the limiting radius of that cluster. Otherwise,
a new singleton cluster is created for the point; an old clus-
ter with the least recent updating is deleted.

4 Full 2nd-Order Cluster Representations

A predicament of the partial 2nd-order cluster represen-
tation is that it is not expressive enough for clusters in an
oblique ellipsoidal shape. We extend it to the full 2nd-order
representation by including the full covariance matrix for
cluster k in Ck:

Ck = {μk,Σk,πk} , (14)

where μk is a (weighted) mean vector, Σk is a (weighted) full
covariance matrix corresponding to the 2nd cross moments,
and πk is the total number (weight) of points in cluster k.
This representation is equivalent to the Gaussian mixture
model (GMM), a statistically mature semi-parametric clus-
ter analysis tool for modeling complex distributions. Geo-
metrically, mean is the location of a cluster; covariance is
an ellipsoidal approximation of the shape and orientation
of a cluster. Sample mean and covariance together are suf-
ficient statistics for a multivariate normal (MVN) distribu-
tion. GMM can be estimated from a static sample using the
Expectation Maximization (EM) algorithm, which guaran-
tees local convergence, but not readily applicable to data
streams due to unavailable historical data. Thus we use EM
only for estimating the GMM on each window of newly
arrived data. By testing the statistical equality between a
newly detected cluster and a historical one on their mean
and covariance, using the 2nd cross moments, we determine
whether to merge the two clusters. In the two tests below,
we use the following notations. Let x1, . . . ,xn ∈ Rd be a
sample of size n for X with mean vector μx and covariance
matrix Σx, and y1, . . . ,ym ∈ Rd be a sample of size m for Y
with mean vector μy and covariance matrix Σy.

Equality between two mean vectors – The Hotelling’s
T 2 statistic can determine whether μx statistically equals μy.
The null hypothesis is μx = μy. T 2 is defined by [7]

T 2 =
nm

n+m
(x̄− ȳ)�S−1

xy (x̄− ȳ), (15)
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where x̄ and ȳ are respectively the sample means of X and
Y , and the pooled sample covariance matrix is

Sxy = ∑n
1(xi − x̄)(xi − x̄)� +∑m

1 (yi − ȳ)(yi − ȳ)�

n+m−2
. (16)

By [7], if the two samples are independently drawn from
two independent MVN distributions with the same mean
and covariance, then

n+m−d −1
d(n+m−2)

T 2 (17)

has an F distribution with d numerator and n + m− d − 1
denominator degrees of freedom.

Equality between two covariance matrices – We deter-
mine whether the covariance matrix Σx statistically equals a
given covariance matrix Σ0. The null hypothesis is Σx = Σ0.
We first transform the sample by

Y = L−1
0 X , (18)

where L0 is a lower triangular matrix obtained by the
Cholesky decomposition Σ0 = L0L�

0 . Let Σy be the covari-
ance matrix of Y . The new null hypothesis becomes testing
Σy = I, where I is the d-dimensional identity matrix. The
test can be performed using the W statistic defined by [8]

W =
1
d

tr[(Sy − I)2]− d
n

[
1
d

tr(Sy)
]2

+
d
n
, (19)

where Sy is the sample covariance matrix of Y , tr(·) is the
trace of a matrix, and n is the sample size. Under the null
hypothesis that Sy is identity, the test statistic nd

2 W has an
asymptotic χ2 distribution with d(d +1)/2 degrees of free-
dom. Ledoit and Wolf have shown that the above asymp-
totic is true as both d and n go to ∞, known as (n,d)-
consistent [8].

Updating historical clusters – If a newly arrived clus-
ter k and a historical cluster j pass both the mean and co-
variance tests, we consider them statistically equivalent and
merge them into a new one. By the definitions of mean and
covariance, we can derive for the merged cluster

μ =
nπ jμ j +nkμk

nπ j +nk
, (20)

Σ =
(nπ j −1)Σ j +(nk −1)Σk

nπ j +nk −1

+
nπ jμ jμ�

j +nkμkμ�
k

nπ j +nk −1
− nπ j +nk

nπ j +nk −1
μμ�,

(21)

and
π =

nπ j +nkμk

n+nk
, (22)

where nπ j is the weighted number of historical points in
cluster j, and nk is the weighted number of points in the
newly arrived cluster k.

5 Full 3rd- and 4th-Order Cluster Represen-
tations

In the streaming data model, points may not come ran-
domly over time from each class. Those points from a same
MVN class may break into pieces and fall into different
windows of time. Since each isolated piece may have dis-
tinct means and covariance matrices, the merging strategies
based on 2nd-order cluster representations may not recog-
nize these pieces as being in the same class. To splice these
isolated pieces back into the original MVN class, we add
the 3rd and 4th cross moments, M3 and M4, respectively, to
the cluster representation as follows:

Ck =
{

μk,Σk,M
3
k ,M4

k ,πk
}

. (23)

The definitions of the 3rd and 4th cross moments of X are

M3 : E(XqXrXs) =
1
n

n

∑
i=1

Xq
i Xr

i Xs
i , q,r,s ∈ {1, . . . ,d}

(24)

M4 : E(XqXrXsXt)=
1
n

n

∑
i=1

Xq
i Xr

i Xs
i Xs

i , q,r,s, t ∈{1, . . . ,d},
(25)

where q, r, s and t are the dimension indices of X .
This higher-order cluster representation fundamentally

expands the landscape beyond the 2nd-order paradigm, and
provides a much wider playground for incremental clus-
ter merging strategies. Using statistical tests for normal-
ity through skewness and kurtosis computable from the 3rd
and 4th cross moments, one can discover new MVN clusters
by combining cluster pairs with distinct 2nd-order statistics.
We shall see below that the choice of both statistics lies in
the fact that they can be decomposed into combinations of
the cross moments of subsets of data, though their original
definitions involve original data.

Characterizing the asymmetry of a probability distribu-
tion, the multivariate skewness is defined by [9]

b1,d =
d

∑
r,s,t=1

d

∑
r′,s′,t ′=1

Zrr′Zss′Ztt ′Mr,s,t
1,1,1Mr′,s′,t ′

1,1,1 , (26)

where Zrr′ is the element at the r-th row and the r′-th column
of the inverse sample covariance matrix S−1, and Mr,s,t

1,1,1 is
the 3rd central cross moment which can be estimated from
the sample by

1
n

n

∑
i=1

(xr
i − x̄r)(xs

i − x̄s)(xt
i − x̄t) (27)

where xr
i ,x

s
i ,x

t
i are the r,s, t-th dimensions of xi, and x̄r, x̄s, x̄t

are the r,s, t-th dimensions of sample mean vector x̄. The
null hypothesis is that the sample comes from a normal dis-
tribution. Under the null hypothesis, the statistic

A = nb1,d/6 (28)
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has an asymptotic χ2 distribution with d(d + 1)(d + 2)/6
degrees of freedom [9]. For d > 7,

√
2A approximately has

a unit-variance normal distribution with mean [d(d +1)(d +
2)− 3]/3 [9]. Although computing Mr,s,t

1,1,1 by definition in-
volves all historical data, the following equivalent form en-
ables updating Mr,s,t

1,1,1 with only the newly arrived data:

Mr,s,t
1,1,1 =E(XrXsXt)−E(Xt)E(XrXs)−E(Xs)E(XrXt)

−E(Xr)E(XsXt)+2E(Xr)E(Xs)E(Xt).
(29)

Characterizing the peakedness of a probability distribu-
tion, the multivariate kurtosis, is given by [9]

b2,d = E[(X −μ)�Σ−1(X −μ)]2, (30)

with an equivalent form of

b2,d =
d

∑
q=1

d

∑
r=1

d

∑
s=1

d

∑
t=1

ZqrZstMq,r,s,t
1,1,1,1, (31)

where Mq,r,s,t
1,1,1,1 is the 4-th central cross moment and can be

estimated by

1
n

n

∑
i=1

(xq
i − x̄q)(xr

i − x̄r)(xs
i − x̄s)(xt

i − x̄t). (32)

Although computing Mq,r,s,t
1,1,1,1 by definition requires all his-

torical data, it can be decomposed to combinations of cross
moments as follows:

Mq,r,s,t
1,1,1,1 = E(XqXrXsXt)−E(Xt)E(XqXrXs)−

E(Xs)E(XqXrXt)−E(Xr)E(XqXsXt)−
E(Xt)E(XqXrXs)+E(XsXt)E(XqXr)+
E(XrXt)E(XqXs)+E(XrXs)E(XqXt)+
E(XqXt)E(XrXs)+E(XqXs)E(XrXt)+

E(XqXr)E(XsXt)−3E(Xq)E(Xr)E(Xs)E(Xt),

(33)

which allows it to be updated exactly with only newly ar-
rived data. Under the null hypothesis of normality,

b2,d − [d(d +2)(n−1)/(n+1)]√
8d(d +2)/n

(34)

asymptotically follows the standard normal distribution
N(0,1) [9].

A historical cluster and a newly arrived cluster can be
merged using the updating formula in Eq. (20) to (22), if
their combination passes the multivariate normality tests.

6 Empirical Performance Comparison

Using the seven ECE measures on one synthetic and two
real data streams, we compared the performance of six dif-
ferent cluster representation configurations:

• “no merge” – no merging is done between clusters de-
tected from the newly arrived data with historical ones;

• “2nd order diagonal covariance” – Ck includes
a weight, a mean and the diagonal line of a covariance
matrix;

• “HPStream” – Ck is the same as in “2nd order
diagonal covariance”;

• “2nd order” – Ck includes a weight, a mean and a
full covariance matrix;

• “4th order” – Ck includes a weight, a mean, a co-
variance matrix, a 3-D 3rd cross-moment matrix and a
4-D 4th cross-moment matrix; and

• “4th order with one-dim” – Ck is the same as in
“4th order”, but the merging strategy performs ad-
ditional tests on the 1-D skewness and kurtosis.

We included lower-order cluster representations for com-
parison without the effect due to different merging strategies
for the lower-order statistics. The performance is compared
as a function of exponentially increasing window sizes.
The EM algorithm we used was implemented in R package
MClust [6]. The maximum number of clusters set for EM
was 30. To correct the multiple simultaneous testing effect
in comparing multiple pairs of clusters, we used Bonferroni
adjusted p-values with an α-level of 0.05. The parameters
for HPStream were set as follows: InitNumber = speed
v = window size, decay-rate λ = 0.5, spread radius
factor τ = 2. We also set the number of projected
dimensions to the original number of dimensions such that
the results can be compared. All the experiments were per-
formed on a Xeon 5135 CPU computer with 16GB memory
running on SuSE Linux.

The synthetic data stream – Five data streams of 5,000
time points each were randomly generated from a 2-D five-
component GMM as defined in Table 1. Figure 1 shows a

Table 1. Parameters of the 2-D GMM.
Component Mean vector Covariance matrix

1 21.03224 0.6906479 2.043568
π1 = 0.0698 -25.38627 2.043568 6.270815

2 -11.03656 0.5340183 -1.615203
π2 = 0.024 -40.86163 -1.615203 9.669167

3 46.20645 0.853299 -2.514397
π3 = 0.0976 -48.90667 -2.514397 21.18846

4 7.429518 0.7738911 0.3412344
π4 = 0.0988 26.4398 0.3412344 7.950545

5 37.33823 0.04053236 -0.04607913
π5 = 0.7098 -45.89366 -0.04607913 2.024866
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sample of the data stream. Points belonging to different
clusters are marked in distinct colors and symbols. The
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Figure 1. Scatter plot of the synthetic data
stream.

proportions of each class evolve over time in a window-
size step of 200, as shown in Table 2. The clustering per-
formance was averaged over these five instances of data
streams. The window sizes used in clustering were 157,

Table 2. Class proportions in each window.
Window Class 1 Class 2 Class 3 Class 4 Class 5

1 0.062 0.152 0.452 0.000 0.334
2 0.064 0.058 0.194 0.000 0.684
3 0.074 0.030 0.112 0.000 0.784
4 0.050 0.000 0.076 0.000 0.874
5 0.094 0.000 0.044 0.008 0.854
6 0.070 0.000 0.050 0.104 0.776
7 0.074 0.000 0.034 0.164 0.728
8 0.066 0.000 0.010 0.212 0.712
9 0.070 0.000 0.004 0.244 0.682
10 0.074 0.000 0.000 0.256 0.670

313, 625, 1,250, and 2,500. The legend for different clus-
ter representations is shown in Fig. 2(a). The performances
using three types of ECE measures are shown in Fig. 2 to
4. The measures for consistency of classes given clusters
are shown in Fig. 2; those measures for consistency of clus-
ters given classes Fig. 3; and those combining both con-
sistencies Fig. 4. We can observe that although the con-
sistency of classes w.r.t. clusters is very similar (Fig. 2),
there is a substantial difference in the consistency of clus-
ters w.r.t. classes (Fig. 3): Higher-order cluster represen-
tations are much better than lower-order ones. The com-
bination of both consistency measures (Fig. 4) leads to an
overwhelmingly outperforming 4th-order cluster represen-

tation. The different ECE measures are also consistent. The
under-performing lower-order cluster representations im-
prove significantly over increasing window sizes, and even-
tually come close to the performance of the higher-order
ones, because the various issues addressed by the higher-
order cluster representations in data stream clustering be-
come less dominant when the window size becomes larger.
It may be worthwhile to point out that the performance of
HPStream is very similar to the partial 2nd-order cluster
representation, despite of different merging strategies.

The PDMC data stream – This data set was collected
by BodyMedia, Inc. and used by the Physiological Data
Modeling Contest (PDMC) in the International Conference
on Machine Learning in 2004. Each point is described
by sixteen attributes: userID, sessionID, sessionTime, two
characteristics, annotation, gender and nine sensor values,
with a class label of various physical activities. The train-
ing data set was collected by 9 sensors observing for ap-
proximately 10,000 hours, when a person wore a device.
The objective was to cluster the points with several possible
physical activity labels. We extracted the 9 sensory values
from the data set containing a total of 46,209 observations.
We used the window sizes of 723, 1,445, 2,889, 5,777, and
11,553 for performance evaluation. It took 1 hour and 44
minutes for the window size of 723. Other window sizes
used less time. Figure 5 to 7 plot the performance on three
types of ECE measures. Figure 5(a) shows the legend used
for each picture. Figure 5 displays the performance eval-
uated by the measures which consider the consistency of
classes w.r.t. clusters. Although the improvement by using
higher-order strategies is not obvious, our merging strate-
gies under various configurations always have better perfor-
mance than HPStream. Figure 5(b) and Fig. 5(d) show that
the purity and homogeneity of our method are always higher
(better) than HPStream. Figure 5(c) shows that the cluster-
based cross entropy of our method is always lower (better)
than HPStream. Figure 6 shows the performance evaluated
by the measures which consider the consistency of clusters
in each class. In Fig. 6(a), although HPStream can achieve
similar or even better performance than our method when
the window size is small, its class-based cross entropy is al-
ways higher (worse) than our method when the window size
is large enough. Figure 6(b) shows that the completeness of
our method is always higher (better) than HPStream. Fig-
ure 7 displays the performance evaluated by the measures
which consider both class and cluster consistencies. The
V -Measure of our algorithm is always higher (better) than
HPStream. The VI of our algorithm is always lower (better)
than HPStream.

The CovType data stream – The forest CovType data
set was obtained from the UCI KDD archive, used by
several other papers for data stream clustering evaluation.
There are a total of 581,012 instances in the data set and
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(c) Cluster-based cross entropy.
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Figure 2. Cluster-based performance comparison on the synthetic data stream.
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(a) Class-based cross entropy.
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Figure 3. Class-based performance comparison on the synthetic data stream.
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(a) V -Measure (β = 1).
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Figure 4. Cluster & class-based performance comparison on the synthetic data stream.
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(c) Cluster-based cross entropy.
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Figure 5. Cluster-based performance comparison on the PDMC data stream.
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(a) Class-based cross entropy.
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Figure 6. Class-based performance comparison on the PDMC data stream.
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(a) V -Measure (β = 1).
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Figure 7. Cluster & class-based performance comparison on the PDMC data stream.
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(c) Cluster-based cross entropy.
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Figure 8. Cluster-based performance comparison on the CovType data stream.
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(a) Class-based cross entropy.
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Figure 9. Class-based performance comparison on the CovType data stream.
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Figure 10. Cluster- and class-based performance comparison on the CovType data stream.
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seven different forest cover types as class labels designated
for every instance. Each instance is described by 54 at-
tributes, including 10 quantitative and 44 binary attributes.
We extracted all 10 quantitative attributes from the whole
data set. We used the window sizes of 2,270, 4,540, and
9,079. The window size of 2,270 consumed the longest
time, 132 hours, to cluster this data stream. Figure 8 to 10
display the performance of using various cluster represen-
tations. Figure 8 displays the performance evaluated by the
measures which consider the consistency of classes in each
cluster. The improvement of our algorithm under higher-
order cluster representations is not distinguishable from the
lower-order ones. However, our algorithm under various
configurations has better performance than HPStream in
several scenarios. The purity (Fig. 8(b)) and homogene-
ity (Fig. 8(d)) of our method are always higher (better)
than HPStream. The cluster-based cross entropy (Fig. 8(c))
of our algorithm also outperforms HPStream consistently.
Figure 9 displays the performance evaluated by the mea-
sures which consider the consistency of clusters in each
class. However, the performance by using these two meth-
ods – class-based cross entropy and completeness – is in-
consistent: The class-based cross entropy (Fig. 9(a)) of our
method is always higher (worse) than HPStream; the com-
pleteness (Fig. 9(b)) of our method is always above 0.09,
better than HPStream (always below 0.07). Figure 10 plots
the performance evaluated by those measures that com-
bine consistencies w.r.t. both classes and clusters. The V -
Measure (Fig. 10(a)) of our algorithm is always higher (bet-
ter) than HPStream. But the VI (Fig.10(b)) of our algorithm
is higher (worse) than HPStream, inconsistent with the V -
Measure. Such inconsistency indicates the challenge of data
stream clustering for which there is large room to improve
the performance.

7 Conclusions

We have compared various cluster representations, from
the partial 2nd order to full 4th order, of historical clus-
ters for data stream clustering, on both synthetic and real
data sets and compared them with the HPStream method.
The seven ECE measures we employed consider not only
the consistency of classes in each cluster but also the con-
sistency of clusters in each class, the latter more or less
overlooked in the literature. We conclude that higher-order
cluster representations may help when the underlying dis-
tribution can be more or less approximated by the Gaussian
mixture model, and our algorithm outperforms HPStream
in most scenarios that we have tested. One remaining chal-
lenging issue is the poor performance on the completeness
of clustering. This may be partly because the complex shape
of a cluster does not capture well with the way the the 3rd
and 4th cross moments are used in the higher-order clus-

ter representation, though it is the most complex cluster de-
scription one can do so far. This opens up the problem of
finding even more complex cluster representations for many
real data streams. The higher-order cluster representation
fundamentally expands the landscape beyond the 2nd-order
paradigm, and provides a much wider playground for in-
cremental cluster merging strategies. Additionally, multi-
variate kurtosis and skewness are only one avenue of uti-
lizing the 3rd and 4th cross moments. One may expect to
see other potentially powerful merging strategies based on
the higher-order cross moments in the development of data
stream clustering.
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