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Abstract

Dynamic programming is introduced to quantize a con-
tinuous random variable into a discrete random variable.
Quantization is often useful before statistical analysis or re-
construction of large network models among multiple ran-
dom variables. The quantization, through dynamic pro-
gramming, finds the optimal discrete representation of the
original probability density function of a random variable
by maximizing the likelihood for the observed data. This
algorithm is highly applicable to study genomic features
such as the recombination rate across the chromosomes and
the statistical properties of non-coding elements such as
LINE1. In particular, the recombination rate obtained by
quantization is studied for LINE1 elements that are grouped
also using quantization by length. The exact and density-
preserving quantization approach provides an alternative
superior to the inexact and distance-based k-means clus-
tering algorithm for discretization of a single variable.

1 Introduction

We address the problem of quantization of continuous
random variables to discrete ones that will maximally pre-
serve the original probability density function (p.d.f.). We
present a method that achieves density-preserving quanti-
zation by dynamic programming, which guarantees the op-
timality of the discretization. In optimal quantization, the
most important regions are finely quantized, while less im-
portant regions are coarsely quantized, statistically much
more efficient than a uniform quantization. Our algorithm
can work on either raw continuous data or data already ac-
cumulated in finer bins. The number of quantization lev-
els is determined by the Bayesian information criterion –
a function of the log likelihood, the sample size, and the
number of quantization levels, or cross validation.

Graphical models have motivated continued research on
quantization algorithms. A graphical model uses a graph to
represent the joint probability distribution function of mul-
tiple random variables. Each node in the graph represents
a random variable. Edges between nodes encode statistical
dependencies among variables. The joint probability distri-
bution function can be decomposed to the product of condi-
tional probability functions of variables at each node given
their parents. One strategy to make computation of graphi-
cal models feasible is to quantize each variable and treat as
multinomial discrete random variables. For discretized ran-
dom variables, there are more alternatives [1] to determine
statistical independencies between them than in the contin-
uous domain when the underlying p.d.f. is unknown. It is
often necessary for a quantization to preserve the p.d.f. as
much as possible so that to maintain the same statistical de-
pendencies among the discretized variables.

More relevant to our work are approaches that find a
quantization of the data by optimizing an quantization ob-
jective function. Entropy [2], likelihood[3], and distance
have been used as quantization objective functions. Among
these criterions, only likelihood ties directly to the p.d.f.
of the original continuous random variable. Dynamic pro-
gramming has provided a less-known optimal solution to
the 1-D k-means problem[4], and is later used to find an
optimal quantization to classify 1-D samples[5]. However,
dynamic programming has not been used in maximizing
the likelihood for quantization. Our methodology obtains a
non-uniform quantization by optimizing an objective func-
tion that combines likelihood and entropy. Optimal quanti-
zation ensures the adaptivity to the data and overcomes the
statistical ineffectiveness of uniform quantization.

Our quantization algorithm is highly applicable to study
genomic features such as the recombination rate across the
chromosomes and the statistical properties of non-coding
elements such as LINE1. In particular, the recombination
rate obtained by quantization is studied for LINE1 elements



that are grouped also using quantization by length.

2 The Likelihood of Quantization

We define and justify a quantization objective function
that includes the likelihood and entropy measures on the
observed data set. Let X be a random variable and XN =
〈x1, x2, . . . , xN 〉 be a sorted sequence of N real number
samples from X , where x1 ≤ x2 ≤ . . . ≤ xN . Let Q be
a quantization with L bins. Let ∆(q) be the width of bin
q. Let Nq be the total number of data in bin q. The non-
negative Kullback-Leibler divergence from p̂(x) to p(x) is

D(p||p̂) =
∫
p(x) log

p(x)
p̂(x)

dx = E[log p(X)]−E[log p̂(X)],

which is to be minimized by a good estimate p̂(x). As p(x)
is fixed, maximizing E[log p̂(X)] is equivalent to minimiz-
ing DKL(p||p̂). Let p(q) be the density of bin q. We esti-
mate E[log p̂(X)] by average sample log likelihood. Thus
the log likelihood of X for quantization Q is

J(X|Q) = E[log p̂(X)] =
1
N

L∑
q=1

Nq log (p(q)) =
L∑

q=1

J(X|q).

In [6], entropy is utilized as a class impurity measure, while
we use entropy to characterize the generalization ability of
quantization. Maximizing entropy corresponds to minimiz-
ing information loss. Entropy is defined by

H(X|Q) = −
L∑

q=1

Nq

N
log

Nq

N
=

L∑
q=1

H(X|q), (1)

where the contribution of a single bin is H(X|q) =
Nq

N log N
Nq

. Examples of maximum entropy quantization
include equal probability quantization [7], histogram equal-
ization [8], Voronoi tessellation [9], or more generally, near-
est neighbor partitions [10].

In contrast to likelihood, entropy is not a direct perfor-
mance measure of pattern recognition test results. Rather,
the entropy measure in our context controls over-fitting.
The larger the entropy, the less likely for over quantization.

We define the quantization objective function or perfor-
mance measure as

T (X|Q) = wJJ(X|Q) + wHH(X|Q) (2)

with wJ + wH = 1, wJ , wH ≥ 0, where wJ and wH are
given weights for log likelihood and entropy, respectively.
This first term will allow better fit to the data while the
second term penalize the complexity of the fitting to avoid
over-fitting. T (X|Q) can be written in an additive form as

T (X|Q) =
L∑

q=1

T (X|q) =
L∑

q=1

wJJ(X|q)+
L∑

q=1

wHH(X|q),

if we define T (X|q), the contribution of an individual bin
q, as T (X|q) = wJJ(X|q) + wHH(X|q).

A data-driven strategy is to determine the coefficients
wJ , wH through cross validation. The values of wJ , wH

that maximize the likelihood of the left-out fold are selected
to be the coefficients.

Example – A Chi-squared example contrasts maximum
likelihood and maximum entropy quantization. The 1000
data points were generated using a Chi-squared distribution
with 4 degrees of freedom. The quantization level is 8. The
density estimates are shown in Fig. 1. The dashed line is
the p.d.f. of the Chi-squared distribution. In Fig. 1(a), it
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(a) Maximum likelihood quantiza-
tion (wJ = 1, wH = 0).
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(b) Maximum entropy quantization
(wJ = 0, wH = 1).

Figure 1. Density estimates of Chi-squared data
using optimal quantization.

is evident that the underlying density changes much more
rapidly in [0, 2] than in [2,∞). The bins are narrower for
the region from 0 to 2 than for the region above 2, corrob-
orating the consistency result in [11]. In Fig. 1(b), the bins
for the region around the mode at 2 are narrower than the re-
gion further away from the mode. The density of the region
around the mode is larger than other regions. When entropy
is maximized, each bin contains about the same number of
points. This naturally leads to narrower bins for regions of
higher density and wider bins for regions of lower density.
The rational behind the entropy measure is that the least
commitment should be made to the sample. This controls
the generalization ability of the quantization. On the other
hand, the maximum likelihood approach is always trying to
find the best fit to the data and it may over-fit. Therefore,
it is necessary to combine the two measures in a controlled
fashion as we have done in defining T (X|Q).

3 The Optimality Condition for Quantization
using Dynamic Programming

We state without proof the optimality condition for solv-
ing the quantization problem using dynamic programming.
Given X and the number of quantization levels L, the
goal of quantization is to find decision boundaries B =



{b0, b1, . . . , bL}, b0 < b1 < . . . < bL, such that a pre-
defined objective function F (X,B) is maximized. The op-
timality condition is that if there exists a monotonically in-
creasing function g(x) such that

g(F (X,B)) =
L∑

q=1

g(F (Xq, Bq)), (3)

where Bq = (bq−1, bq] and Xq = 〈x|x ∈ Bq〉, then finding
a quantization to maximize F (X,B) can be solved exactly
using dynamic programming.

4 Maximum Likelihood Quantization using
Dynamic Programming

Evidently the optimality condition Eq. (3) holds for
T (X|Q) with g(x) = x. Thus, we can use dynamic pro-
gramming to find a quantization that maximizes T (X|Q).
To avoid over-fitting, one can require a minimum number
of k data in each bin and that identical data are put into the
same bin. We only set the decision boundaries in the mid-
dle of two consecutive data points. This affects the range of
J(X|Q), but it is trivial when sample size is not too small.
This restriction prevents J(X|Q) from overflow.

We define the probability density in bin q by p(q) =
Nq/N
∆(q) . We also define the performance measure of a sub-

quantization Qu
r by T (X|Qu

r ) =
∑u

q=r T (X|q). We use
the notation T (X|Qu

r ,Xn
m) =

∑u
q=r T (X|q) to indicate

that the sub-quantization is to be evaluated on the data set
Xn

m that falls in its bins. Note N is still defined on the over-
all data set XN , not Xn

m. Let T [n, q] be the maximum per-
formance measure from bin 1 to q when xn is the largest
data in bin q. Let I[n, q] be the index to the smallest ele-
ment in bin q such that T [n, q] is achieved. Let T 1[i, n] be
the performance measure contributed by a bin containing
exactly xi to xn. The dynamic programming to maximize
T [N,L] is described below.

Initialization – T [0, 0] = I[0, 0] = 0, I[0, q] = −1
for q ∈ {1, · · · , L}, I[n, 0] = −1 for n ∈ {1, · · · , N},
I[n, q] = −1 for (n, q) ∈ {(n, q)|0 ≤ q < max(1, n −
(N−L)) or min(n,L) < q ≤ L, 1 ≤ n ≤ N, 1 ≤ q ≤ L}.

Feasible decision boundary index set – The indices of
the feasible data for being the smallest element in bin q form
the feasible decision boundary index set An

q = {i|, i ≤
n− k + 1, I[i− 1, q − 1] 6= −1, xi−1 6= xn, I[n, q] 6= −1,
xn 6= xn+1}. The inequality i ≤ n − k + 1 guarantees at
least k data in bin q. I[i − 1, q − 1] 6= −1 states that xi−1

must be feasible for the largest element in the previous bin
q − 1. xi−1 6= xn enforces that the feasible largest element
in the previous bin q−1 must not be the same as xn, to avoid
splitting equally valued data into different bins. xn 6= xn+1

is also not to split equally valued data. I[n, q] 6= −1 asserts
that xn must be feasible for the largest element of bin q.

Recurrence – If An
q is empty, then I[n, q] , −1, mean-

ing xn does not qualify for the largest element in bin q.
Otherwise,

T [n, q] , max
i∈An

q

T [i− 1, q − 1] + T 1[i, n], (4)

I[n, q] , argmax
i∈An

q

T [i− 1, q − 1] + T 1[i, n]. (5)

We assert that T [N,L] maximizes the performance mea-
sure, the corresponding partition is an optimal solution, and
the algorithm has time complexity O(LN2). The weights
wJ and wH can be determined by cross-validation. The
choice of L can be made using either Bayesian informa-
tion criterion or cross validation. The dynamic program-
ming working with sample points can be readily changed to
apply to cumulative sample or data that are already binned,
because the algorithm uses only counts of data within an
interval rather than the actual values of those points.

5 Estimation of Recombination Rate Distri-
bution over Chromosomes by Quantization

Recombination is central to molecular evolution. The
mechanism of recombination can reveal directly how hu-
man evolution occurs. In the nucleus of each human cell
except the gamete, each of chromosomes 1 to 22 comes
with two copies of autosomes called homologous chromo-
somes. During meiosis, the chromosomes of a child emerge
by combining half of the chromosomes from one parent and
half from the other parent. Only homologous chromosomes
will be combined; the two sex chromosomes always com-
bine themselves. During combination, the contents of the
chromosomes are exchanged at some points along the chro-
mosomes, which could be due to cross-over or gene con-
version. Thus child chromosomes do not necessarily con-
tain exactly same copies of parent chromosomes. This in-
formation exchange between parent chromosomes is called
recombination. Recombination rate (RR) is defined as the
number of recombination events in a unit length of chro-
mosome in terms of base pairs, usually in centiMorgan per
Mbps (cM/Mb). The RR distribution (RRD) function maps
a location on the chromosome to an RR value. However, ex-
perimental data on recombination are still very limited due
to the cost of experiments. As the complete human genome
physical map becomes available, an accurate quantitative
representation of the RRD becomes possible.

Recombination events are identified using both genetic
and physical maps. On a genetic map, each marker repre-
sents a unique feature. A marker has two or multiple forms,
called alleles. The alleles can be identified by polymerase
chain reaction. Locations of markers on the physical map
are determined in advance. Markers make detection of re-
combination events possible without sequencing the entire



genomes of generations. The resolution of the identified
events increases with the number of markers. This method
is illustrated in Fig. 2. The first parent has 2 markers A and
B (Fig. 2(a)) and the second parent has the same markers
but with different alleles a and b (Fig. 2(b)). If the child
has the markers as in Fig. 2(c), then at least one recombina-
tion event has occurred at some location between markersA
andB. If the child has the same alleles as their parents as in
Fig. 2(d), then it is unlikely to have a recombination event
between A and B if the markers are close enough. This

----A-----B----
(a) Markers on 1st parent.

----a-----b----
(b) Markers on 2nd parent.

----A-----b---- or ----a-----B----
(c) Markers on the child after recombination.

----A-----B---- or ----a-----b----
(d) Markers on the child possibly without recombination.

Figure 2. Identifying a recombination event
with markers. One marker has two alleles A
and a; the other has two alleles B and b.

method cannot detect the exact location of a recombination
event or it may miss a recombination event between mark-
ers. In addition, if the two parents carry the same set of al-
leles, no recombination event between the markers may be
identified. Therefore, selection of markers directly affects
the effectiveness of recombination detection. Typically, a
good marker collection should be abundant and evenly dis-
tributed across the genome. One such marker family is mi-
crosatellites, which are short sequences of motifs in tan-
dem [12]. The motifs can be di-, tri-, or tetra-nucleotide
repeat units. There are about 104 copies of them distributed
quite evenly over the genome. In the Marshfield map [13],
over 8,000 microsatellites are used; In the Iceland map [14],
there are 5,000 microsatellites.

The frequency of recombination is not uniform across
the genome: more frequent near the telomere – the end of
a eukaryotic chromosome – and less frequent at the cen-
tromere where two copies of the homologous chromosomes
hold together. We consider X , the location of a recombi-
nation event, a random variable. Let p(x) be its p.d.f. Let
F (x) be its cumulative distribution function (c.d.f.).

The RRD function R(x) is in proportion to p(x) defined
as R(x) = R0p(x), where R0 is the total amount of re-
combination events observed on a single chromosome of an
individual. This definition is used in the Iceland RRD esti-
mation [14]. Since its exact physical location is unknown,
a recombination event between two markers is assigned the
position of the marker with larger coordinate on the chro-
mosome. With N recombination event locations observed,
i.e., x1, x2, · · · , xN , a p.d.f. estimation p̂(x) is obtained

using the Parzen window method in [14]

p̂(x) =
1
N

N∑
i=1

k(x, xi), (6)

where

k(x, xi) =
{

1
∆ , |x− xi| ≤ ∆

2
0, otherwise

,

and ∆ is the bandwidth. Then they choose a sequence ofM
equally spaced locations y0, 2y0, 3y0, · · · ,My0 to calculate
the estimated p.d.f. values. In the end, they fit splines to
these points to obtain a smooth p.d.f p(x) and then obtain
R(x). The critical bandwidth parameter ∆ is 3 Mbps. The
sample is drawn from 1257 meioses.

Another RRD is defined in F (x) by R(x) = R0
dF (x)

dx ,
used by the Marshfield RRD [13]. In this approach, it is not
necessary to know the exact location of each recombination
event. They compute the empirical c.d.f. F̂ (x) from the ob-
served recombination events, then fit cubic splines to F̂ (x)
and then obtain the RRD. In this study, only 184 meioses
are analyzed to identify recombination events, which is a
much smaller sample size compared to [14].

The RRDs in [14] are represented as continuous func-
tions, with no explanation of how the bandwidth ∆ is cho-
sen. All the splines are saved and must be evaluated to cal-
culate RRD at a location. Alternatively, an optimal quanti-
zation algorithm locates the most important regions which
are then finely quantized, while less important regions are
coarsely quantized. Other methods, e.g., kernel methods,
treat everywhere in the space equally without prioritized re-
source allocation. In the less important regions, the poten-
tial of waste of resources exists.

We performed optimal quantization on the genetic dis-
tances of selected markers [14], given as the empirical c.d.f.
of the recombination events. We first obtained the control
parameters wJ , wH , L, and k by a 5-fold cross-validation.
The values of wJ and wH range from 0 to 1 with a step
of 0.1. L ranges from 2 to 28 in powers of 2. k ranges
from 1 to 36 in powers of 3. Second, using the best pa-
rameters, the p.d.f. was estimated, on all the recombination
events of each chromosome. The estimated RRD functions
of chromosomes 3 and X are shown in Fig. 3 and 4. Recom-
bination is much more active around the ends of chromo-
somes than the centers. Our RRDs show more fluctuations
than those shown in [14, 13]. Since our control parame-
ters are all cross-validated, it is very likely that the RRDs
indeed change more abruptly than the much more smooth
curves published before. To fit splines on our estimation re-
sult could make the curve smoother, but it requires valida-
tion of the smoothness. We further compare quantitatively
the performance of optimal quantization with Parzen win-
dow approach. To make the comparison fair, we did not
apply splines. The evaluation is done by a 5-fold cross-
validation. The performance measure is the log likelihood



of the left-out data reserved for test, using the p.d.f. esti-
mated from the the data not using the left-out data. The av-
erage and the standard deviation of the cross-validated log
likelihood for each chromosome are shown in Table 1. The
average log likelihoods of the p.d.f. obtained by optimal
quantization are consistently higher than those by Parzen
window method. The standard deviations of both are simi-
lar, with Parzen window results slightly smaller on most of
the chromosomes. Therefore the optimization quantization
approach provides a better RRD estimation than that of the
Parzen window.

Table 1. Comparison between optimal quanti-
zation & Parzen window.

Chromosome Average Log Likelihood Standard Deviation
Opt. Quant. Parzen Window Opt. Quant. Parzen Window

1 -19.11 -19.17 0.03 0.01
2 -19.10 -19.21 0.05 0.02
3 -18.90 -19.05 0.04 0.04
4 -18.91 -18.98 0.03 0.02
5 -18.79 -18.91 0.04 0.03
6 -18.72 -18.88 0.05 0.03
7 -18.69 -18.87 0.03 0.02
8 -18.60 -18.78 0.02 0.01
9 -18.42 -18.52 0.04 0.03

10 -18.55 -18.69 0.05 0.05
11 -18.53 -18.65 0.06 0.03
12 -18.57 -18.63 0.03 0.04
13 -18.02 -18.32 0.06 0.04
14 -17.94 -18.14 0.07 0.07
15 -17.87 -18.17 0.06 0.07
16 -18.05 -18.18 0.07 0.04
17 -17.99 -18.14 0.05 0.05
18 -18.04 -18.16 0.08 0.06
19 -17.70 -17.95 0.09 0.05
20 -17.62 -17.70 0.09 0.03
21 -17.05 -17.28 0.06 0.05
22 -16.96 -17.16 0.08 0.05
X -18.42 -18.53 0.04 0.03
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Figure 3. Chromosome 3

6 Localized Study of Recombination Rate
within Length Groups of LINE1s

The abundance of LINE-1 (L1) retrotransposons con-
stitutes one of the most puzzling features of mammalian
genomes and it is now clear that L1 retrotransposons have
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Figure 4. Chromosome X.

profoundly affected the structure and function of genomes
[15, 16, 17]. However, the evolutionary forces underly-
ing their genomic distribution and their dynamics in natural
populations remain incompletely understood. Although L1
insertions can occasionally be recruited to perform a func-
tion beneficial to the host [17], the vast majority of new in-
sertions are more likely to be either neutral or detrimental.

One interesting question is how the RR at a L1 location
might depend upon the length of the L1. A linear regres-
sion could not adequately capture subtlety of the RR-length
interaction. Given the relatively large sample size of L1s,
instead of fitting a higher order linear regression model,
we broke L1s in L1PA2 to L1PA6 families into groups
by their length and looked at the trend of RR within each
group. Grouping is determined by optimal quantization of
the lengths of all L1s under consideration. Intuitively, this
method separates L1s into groups by length when there is a
sudden change in the number of L1s over unit length. We
selected the number of groups to be six, roughly capturing
the overall distribution of length while assuring that the in-
tervals are not too small for a meaningful regression. The
six length groups are shown in Table 2. The grouping re-
flects a natural tendency for L1 to segregate by length.

Table 2. L1 groups by length, with length
ranges, counts, and percentage.

L1 Groups Length Range L1 Count/Percentage

1 [100,490] 12226/34%
2 [491,1152] 8559/24%
3 [1153,2498] 6462/18%
4 [2499,6001] 4182/12%
5 [6002,6183] 4231/12%
6 ≥ 6184 218/1%

A one-way ANOVA (Table 3) indicates indeed the RR
means are significantly different among L1 length groups.
The Tukey’s Honest Significant Differences (HSD) test re-
veals further details in Fig. 5. Under the null hypothesis
of RR mean equality across groups, if one compares every



Table 3. One-way ANOVA for RR over the
length groups.

Degrees of Sum of Mean F Pr(> F )
Freedom Squares Squares value

group 5 93 19 7.5441 4.330e-07
Residuals 35872 88107 2

two groups using the 5% α-level, the chance of observing
some inequality among the pairs can be much greater than
the anticipated 5% type I error. The Tukey’s HSD test cor-
rects this problem. In Fig. 5, the range of each line segment
manifests the 95% confidence interval of the mean RR dif-
ference between the two length groups labeled on the left
of the segment. The vertical dashed line marks the zero
difference location. If an interval contains zero, there is
no significant evidence from the sample to conclude that
the two groups have different mean RRs. All differences
are the mean RR of a group with a longer length minus
that of one with a shorter length. A major observation is
that no segments have both ends above zero, suggesting
no significant trend of increasing RR as length increases.
The only almost significant negative difference between
two consecutive length groups occurs from group 2 to 3,
which accounts for other significant differences among non-
consecutive length groups. Therefore, the multiple compar-
ison analysis pins down that the most significant reduction
in RR takes place among the L1s of intermediate length.

Based on the Tukey’s HSD results, we studied the trend
of RR within each length group using linear regression on
the length of L1. The intercepts and slopes of each linear
regression line, and the corresponding p-values are given in
Table 4. No length group shows a significant positive slope.
We observe that the len.cat2 group has a highly significant
negative slope. Figure 6 shows the mean RR-length scatter

Table 4. Linear regression slopes of each
group.

Estimate Std. Error t-Statistic Pr(> |t|)
1:length -5.537e-05 1.275e-04 -0.434 0.6641
2:length -2.446e-04 9.006e-05 -2.716 0.0066
3:length -3.409e-05 5.126e-05 -0.665 0.5060
4:length 3.042e-06 2.268e-05 0.134 0.8933
5:length 5.923e-05 4.409e-04 0.134 0.8931
6:length 3.108e-04 5.386e-04 0.577 0.5639

plot with the regression lines overlaid. We can observe in
the plot a decreasing trend of the regression line in group
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Figure 5. Tukey’s HSD test on the RR means
among length groups. Numbers on the ver-
tical axes correspond to length groups. For
example, 5-3 stands for the mean RR of group
5 minus that of group 3.

2 quite evidently. It is also quite evident subjectively that
there is a declining tendency in the mean RR as the length
increases. This further analysis match well to previous find-
ings by the Tukey’s HSD test. Therefore the major RR re-
duction occurs on the L1s of length 491 to 1152, which are
not full-length L1s, but the L1s of intermediate length.

7 Conclusion

We have described an approach to quantize optimally a
random variable based on likelihood by dynamic program-
ming. Although our approach is quadratic in sample size, it
guarantees the optimality. The distance-based k-means al-
gorithm for 1-D quantization due to its computational con-
venience shall either be replaced by our likelihood-based
approach when preservation of the distribution of the origi-
nal continuous random variables is desired, or by a dynamic
programming implementation similar to ours that guaran-
tees optimality. Applications of our algorithm in estimating
RR distributions and characterizing LINE1 elements show
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Figure 6. Scatter plot of mean RR versus L1
length. The line segments are linear regres-
sions within each group. Only the second
segment has a significant decreasing trend.

its effectiveness in capturing the underlying p.d.f.s of data.
It can also be used to discretize other genomic features in-
cluding GC content, gene expression rate, and non-coding
element densities over an entire genome.
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