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Abstract: The problem of computing logical network models to account for temporal
dependencies among interacting genes and environmental stimuli from high-throughput
transcriptomic data is addressed. A logical network reconstruction algorithm was devel-
oped that uses the statistical significance as a criterion for network selection to avoid false
interactions arising from pure chance. Using temporal gene expression data collected from
the brains of alcohol-treated mice in an analysis of the molecular response to alcohol, this
algorithm identified several genes from a major neuronal pathway as putative components
of the alcohol response mechanism. Three of these genes have known specific associations
with alcohol response as reported in the literature. Several other potentially relevant genes
were also highlighted, in agreement with independent results from literature mining.
These genes may play a role in the response to alcohol. Additional, previously-unknown
interactions were discovered in the logical network that, subject to biological verification,
may offer new clues in the search for the elusive molecular mechanisms of alcoholism.

Keywords: Logical networks, Transcriptional regulation, Alcohol response.

1. INTRODUCTION

The regulation of transcription occurs in an intrigu-
ingly complex system involving multiple interacting
regulatory processes. Modeling transcriptional reg-
ulation requires algorithms that retain information
about regulatory interactions. We reconstruct logical
networks (LNs) from trajectories of discrete random
variables, in order to uncover temporal dependencies
among genes and environmental stimuli. The tempo-
ral interactions serve as a model for transcriptional
gene regulatory networks (GRNs). We have developed
an algorithm and evaluated it theoretically, quantita-
tively, and empirically, using transcriptome profiles
from the brains of alcohol-treated mice, providing
tremendous opportunities and insight to the diverse

underlying molecular mechanisms in alcoholism. We
inspect through the LN model temporal dependencies
among key genes in response to alcohol in mice.

Temporal dependency is a function of causal interac-
tions among processes in a regulatory network. Only
when the function is nearly linear, does a temporal
dependency substantially reflect a causal interaction.
When linearity does not hold, a causal interaction
may not be observed as a strong temporal depen-
dency. System modeling may be further complicated
by incomplete observations as are typical in biological
data, for example, missing protein concentrations and
small molecular messengers in a regulatory network.
However, consistent temporal dependency must arise
from a causal interaction, even with incomplete ob-



servations. Therefore, statistically significant temporal
dependencies among genes and environmental stimuli
constitute a foundation to establish causalities.

An LN is a system model to characterize interactions
among discrete variables over discrete time. It is a di-
rected graph, with each node in the graph being a dis-
crete variable plus a logical function. The logical func-
tion for a node X can be described by a generalized
truth-table, mapping all possible combinations of par-
ent node values to values of X . The Boolean network
(BN) (Liang et al., 1998; Akutsu et al., 2003; Pal et al.,
2005; Klamt et al., 2006), where each variable takes
the value of either 0 or 1, is a special case of an LN. An
LN can be reconstructed from observed trajectories of
a system under perturbed conditions. There are two
important issues: One is how to compute efficiently
the best among feasible LN candidates; the other one
is how to determine the probability that the best can-
didate arises out of the randomness caused by noise
and sampling errors in a network where no nodes in-
teract. The first issue depends on how one handles the
combinatorial computational cost, often NP-complete,
incurred by reconstructing an LN. The second issue
has been gaining attention such as in BN fitting (Kim
et al., 2007). By computing the statistical significance
of an LN based on multinomial tests at each node,
we are able to resolve both issues in one step. We
also established an approach to calculate the statistical
power for LN modeling given number of time points
and replicas per time point in an experiment, which
can guide the design of time-course experiments.

Although other modeling methodologies have been
developed, discrete dynamic system models including
LNs and BNs are advantageous given the increased
availability of experimental designs that collect tem-
poral gene expression data at the whole genome scale.
A BN represents, however, each gene expression level
in two states: on and off, thereby limiting its capac-
ity in discriminating quantitative changes in gene ex-
pression levels under gradually perturbed situations.
The LN extension enables 1) finer description for the
dynamics of genes, and 2) richer interaction patterns
among genes. More importantly, we will present a
one-step determination of statistical significance for
an LN based on multinomial hypothesis testing, which
addresses the goodness-of-fit and over-fitting issues
tackled as separate steps in other approaches such as
the application of coefficient of determination with
user specified network complexity (Shmulevich et al.,
2002). Bayesian networks and dynamic Bayesian net-
works (DBNs) have been used for GRN modeling, see
(Imoto et al., 2003; Friedman, 2004) and (Ong et al.,
2002), respectively. A DBN describes statistical de-
pendencies among genes temporally, by incorporating
time transitions between Bayesian networks at con-
secutive time points. Since a DBN does not explicitly
describe functional relations among genes, it is not
a direct tool to understand GRN dynamics, though

certain DBNs can indeed be converted to probabilistic
BNs (Lähdesmäki et al., 2006).

We applied the LN to study the alcohol influence on
gene expression in mouse brains. The effects of alco-
hol on functions of gene products and the correspond-
ing effect on gene expression is an active research
area, particularly in the inflammatory and neural plas-
ticity processes that result in lasting brain changes in
response to alcohol. We believe the LNs resulting from
our work will provide highly relevant clues to discover
biologically important gene interactions involved in
the molecular mechanisms of alcoholism.

2. DEFINITION OF LOGICAL NETWORK

An LN is a directed graph with a logical function
attached to each node, a discrete variable that changes
over discrete time. Each logical function for a node
X can be described by a generalized truth-table that
maps all possible combinations of parent node values
to values of X . Let X have Q quantization levels and K
parents π1, π2, . . ., πK of Q1, Q2, . . ., QK quantization
levels, respectively. The complexity of an LN is the
maximum number of incoming edges a node can have.
A synchronous LN updates the values of all the nodes
simultaneously. An LN is a dynamic modeling tool
because its current state can be computed from the
previous state using the logical functions for each
node. An LN is first-order if the value of each node
at time t only involves the parent values at time t−1.
Our discussion is restricted to synchronous first-order
LNs. An LN allows richer interaction patterns than
a BN. All types of pairwise interactions in a BN are
illustrated in Fig. 1. A nonlinear pairwise interaction

Linear:

___________ ___________

1 |_____|__*__| 1 |__*__|_____|

0 |__*__|_____| 0 |_____|__*__|

0 1 0 1

Constant:

___________ ___________

1 |__*__|__*__| 1 |_____|_____|

0 |_____|_____| 0 |_____|__*__|

0 1 0 1

Independent:

___________

1 |__*__|__*__|

0 |__*__|__*__|

0 1

Non-deterministic:

___________

1 |__*__|__*__|

0 |__*__|_____|

0 1

Fig. 1. All types of pairwise interactions in a BN.

between two logical variables, shown in Fig. 2, is
impossible with a BN.

_________________

1 |_____|__*__|_____|

0 |__*__|_____|__*__|

0 1 2

Fig. 2. A nonlinear interaction pattern in an LN.



3. STATISTICAL POWER FOR DETECTING A
LOGICAL NETWORK

Given an observed trajectory of an LN and the sam-
ple size per time point, one is statistically limited
in detecting an LN up to a certain complexity. The
probability of accepting an LN some of whose nodes
are indeed interacting given the observed trajectory is
called the statistical power, which is determined by
the logical functions, the distribution of each variable,
sample size, Type I error, and the effect strength. The
statistical power is independent of the inference ap-
proach used to recover an LN from the trajectory. With
statistical power, one can answer the question whether
the amount of data in the trajectory can statistically
support any LN for certain complexity at all. Thus,
statistical power is an important tool in experimental
design to determine appropriate sample sizes.

We assume that each entry in a truth-table has a bi-
nomial distribution. The alternative hypothesis is that
the binomial distribution has a success rate parameter
of pa = 0.8, versus the null hypothesis that the bino-
mial distribution has pn = 0.5. In other words, if the
chances are equal for the entry in the truth-table for
success or failure, there is no evidence for this truth-
table to reflect any interaction. The test is two-sided.
The Type I error rate α = 0.05 is adjusted to α ′ con-
sidering multiple testing effect. Let n− and n+ be the
decision boundary: if n < n− or n > n+, reject null hy-
pothesis, or equivalently the rejection region is (0,n−)
and (n+,N), where N is the total number of trials.
The decision boundaries n− and n+ are determined
such that ∑

n−
n=0 B(N,n, pn) + ∑

N
n=n+ B(N,n, pn) = α ′

and B(N,n−, pn) = B(N,n+, pn), where the bino-
mial distribution is defined as B(N,n, p) =

(N
n

)
pn(1−

p)N−n. The statistical power is ∑
n−
n=0 B(N,n, pa) +

∑
N
n=n+ B(N,n, pa). Figure 3 plots the maximal power

as a function for the complexity of an LN given dif-
ferent lengths of trajectories. The curve demonstrates
that the more complex the network is, the lower the
statistical power, given the same experimental factors.
A (maximal) 68% power is possible if we use 5 time
points for each condition with 7 replicas at each time
point with a network of 20 genes, a complexity of 6,
and a Type I error rate of 0.05. For a typical statistical
power cutoff of 60%, our microarray experiment in
Section 5 was justified. The Type I error α adjustment
may be conservative as dependency may exist among
time points. Although the binomial distribution can be
replaced with a multinomial one to calculate the sta-
tistical power for a generalized truth-table, this study
establishes the minimal requirements.

4. LOGICAL NETWORK INFERENCE BY
MULTINOMIAL TESTS

Various criterions for goodness-of-fit have been used
in inference of an LN from observed trajectories.
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Fig. 3. Statistical power for detecting an LN as a
function of its complexity, given number of time
points (5), number of replicas per time point
(7), network size (20) and hypotheses pa = 0.8
(alternative) vs. pn = 0.5 (null).

Mutual information among variables has been em-
ployed in interaction graphs (Margolin et al., 2006);
likelihood is used to determine network structure for
Bayesian networks (Friedman and Goldszmidt, 1996);
coefficient of determination has been created for BNs
(Shmulevich et al., 2002). These measures, however,
do not penalize the complexity of a network and over-
fitting has to be resolved separately. Instead, we de-
rived the statistical significance of an LN as a measure
for both goodness-of-fit and model selection. It is de-
rived from multinomial hypothesis testing. We move
forward from existing approaches in LNs that often do
not assess the probability of an LN arising by chance.

Table 1 shows the transition table of a single node X ,
which can also be considered a contingency table. The

Table 1. The transition table of node X .

row π1[t−1] . . . πK [t−1] X [t]
Q1 = 2 . . . QK = 3 #0 . . . #Q−1

0 0 . . . 0 n0,1 . . . n0,Q−1
1 0 . . . 1 n1,1 . . . n1,Q−1

.

.

.
.
.
.

R−1 1 . . . 2 nR−1,1 . . . nR−1,Q−1

number of rows in the table is R = Q1Q2 · · ·QK . nr,c is
the number of observations in which the parents take
the values in the r-th row at t − 1 and X takes the
value of c at t. Let n·,c be the summation of the c-th
column. Let nr,· be the summation of the r-th row. Let
n be the total number of observations. The following
hypotheses are designed for each row:

Null hypothesis: nr,0 : nr,1 : . . . : nr,Q−1 = n·,0 : n·,1 :
. . . : n·,Q−1;

Alternative hypothesis: nr,0 : nr,1 : . . . : nr,Q−1 6= n·,0 :
n·,1 : . . . : n·,Q−1.

This hypothesis test determines if X depends on par-
ent values in row r. It is in essence a multinomial
test with the probability parameters n·,0

n ,
n·,1
n , . . . ,

n·,Q−1
n .

A multinomial test inspects the chi-square statistic



χ2(r) = ∑
Q−1
c=0

(nr,c−n̄r,c)2

n̄r,c
, where n̄r,c = nr,·n·,c

n is the ex-

pected count. Asymptotically χ2(r) has a chi-square
distribution with Q−1 degrees of freedom. χ2(r) can
be computed for each row r in the table. By the prop-
erty of the chi-square distribution, summation of inde-
pendent chi-squares is still chi-square whose degrees
of freedom are the summation of each individual de-
grees of freedom. However, when we sum up all χ2(r)
over r, we loose Q− 1 degrees of freedom because
each column has a fixed total. Thus the transition ta-
ble statistic χ2 = ∑

R−1
r=0 χ2(r) is chi-square distributed

with (R− 1)(Q− 1) degrees of freedom. Let χ2
i with

degrees of freedom νi be the statistic for the transition
table of the i-th node. We define the test statistic for
an LN with N nodes as χ2

LN = ∑
N
i=1 χ2

i . Under the
null hypothesis of no interaction, χ2

1 ,χ2
2 , . . . ,χ2

N are
all independent. Thus, χ2

LN has chi-square distribu-
tion with νLN degrees of freedom by summing up the
degrees of freedom for each transition table νi, i.e.,
νLN = ∑

N
i=1 νi. A p-value can be computed for χ2

LN to
indicate the statistical significance of the LN model.
The p-value provides a means to trade-off between
goodness-of-fit and complexity. Therefore, LN recon-
struction is to find an LN with the minimum p-value.
Since the χ2

i statistics for the transition tables at each
node are independent of each other, minimization of
the overall p-value reduces to minimizing the p-values
for individual transition tables at each node.

Once an optimal set of transition tables at each node
are identified, truth-tables can be derived by maximum
likelihood estimation of probabilities for the multi-
nomial distribution on each row. Each row will be
assigned a truth value that corresponds to the max-
imum probability parameter in its multinomial dis-
tribution. Although not implemented in this paper, a
probabilistic LN can be reconstructed, not by setting a
truth-table, but by keeping the probability parameters
in the multinomial distribution for each row. The LN
reconstruction algorithm is presented as Algorithm 1.
It searches for each node an optimal truth-table that
minimizes the p-value with up to M parents. Its com-
plexity is O

(
N ∑

M
i=1 Qi

max
(N

i

))
, where Qmax is the

maximum quantization level of all nodes.

5. COMPUTATIONAL MODELING RESULTS

We demonstrate an LN reconstructed from tempo-
ral gene expression in mouse brains in response to
alcohol to uncover known interactions curated in
PathwayArchitectTM (STRATAGENE, La Jolla, CA).

Animal husbandry and cDNA microarray – Thirty-
five adult DBA/2J (D2) mice were housed on a 12:12
light:dark cycle and given food and water ad libitum.
The mice were habituated for three days to i.p. injec-
tions of saline and on the forth day were injected with
20% alcohol in saline in a total dose of 4 g/kg. D2
mice are exquisitely sensitive to alcohol dependence,

Algorithm 1 Logical-Network-Construction
for each node do

for m← 0 to M do
for each possible selection of m parents do

Accumulate a transition table
Current p-value← Perform multinomial test
if the p-value is smaller than the current minimum p-
value for the current node then

minimum p-value← current p-value
end if

end for
end for
Convert the transition table with the minimum p-value to a
truth-table for node m by maximum likelihood estimation of
multinomial parameters.

end for
Compute the p-value for the logical network

and at this dose show physical signs consistent with
dependence from about 4-10 hours after injection.
Brains were removed and anterior cortex tissue was
dissected at 2, 7, 12, 24 hours following the alcohol
injection with 7 biological replicas at each time point.
cDNA microarrays were hybridized using the Array
350 microarray labeling kit.

Initial gene screening and quantization – Through
ANOVA across time course, post hoc t-tests and par-
tial least squares analyses, a total of 392 differentially
expressed genes were selected because they exhibit
both temporal and alcohol related expression varia-
tion. Missing gene expression values are imputed us-
ing SAM software (Tusher et al., 2001). Among the
392 selected genes, we performed maximum likeli-
hood joint quantization (unpublished) to obtain a list
of 19 genes for LN reconstruction. The quantization
levels for each dimension were between 1 and 4. The
19 selected genes ended up with exactly 2 quantization
levels, while the 373 ignored genes were all quantized
to a single level. The alcohol node is assigned based
on the experimental condition: 1 for alcohol-injected
samples and 0 for control samples.

Logical network reconstruction – A reconstructed
LN is shown in Fig. 4. The size of the test is 0.05.
The maximum number of parents per node is 6. The
overall p-value of the inferred network is 3.6e-05 and
the p-values for truth-tables at each node are given in
Table 2. In this LN, Idh3g, Smarce1, 1700029101Rik,
Gm740, MGC40675, Fosb, Ckap1, and Camk2b are
the most influential gene nodes. In fact, a major neural
pathway is represented. The interaction with alcohol
for Smarce1 (Ozimek et al., 2004), Fosb (Bachtell
et al., 1999), and Camk2b (Winston and Maro, 1995)
are biologically verified. In addition, nine out of the
19 nodes in our LN (Fig. 5) have been identified as
interacting with alcohol from biology literature by
PathwayArchitect. This indicates that our approach
was indeed successful in capturing significant causal
interactions through temporal dependencies. More im-
portantly, however, new hypotheses for several genes
that had never before been implicated in alcoholism
were generated. The molecular mechanisms of alco-
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Fig. 4. An inferred LN (p-value=3.6e-05). The oval nodes represent genes and the inverse triangle alcohol.

Fig. 5. Genes responsive to alcohol (EtOH) uncovered by PathwayArchitect from literature. The darker nodes
were identified in Fig. 4.

Table 2. The p-values and number of par-
ents for each node in the LN.

Node Symbol #parents p-value

1 Alcohol - -
2 Idh3g 2 0
3 Rorb 4 2.88658e-15
4 AI854741 4 0
5 Nsd1 5 0
6 Gla 4 0
7 Camk2b 3 4.35629e-12
8 Sv2c 4 0
9 Fosb 4 0

10 Gm740 2 3.08642e-14
11 MGC40675 1 4.996e-15
12 BC055107 4 2.12399e-10
13 Tspyl3 4 0
14 1700029I01Rik 4 0
15 Smarce1 4 3.52554e-05
16 Antxr1 1 3.91767e-11
17 Pigv 4 0
18 Thbs4 3 0
19 Ckap1 1 5.73303e-07
20 Apc 4 1.35336e-13

holism are complex and poorly understood. These re-
sults demonstrated that our algorithm can generate and
prioritize new hypotheses for understanding complex
traits such as alcoholism.

6. CONCLUSIONS AND FUTURE WORK

Our LN reconstruction algorithm identifies significant
associations among a subset of genes to a target gene
by performing the multinomial test, derived from a
statistical property regarding the summation of inde-
pendent chi-squares. Thus we have offered a unique
framework to extract LNs to characterize temporal
interactions from time-course gene expression data.
Although the alcohol influence on gene expression
in mouse brains remains an open problem for cur-
rent biological investigation, we are among the first
to inspect the temporal patterns in gene expression by
reconstructing an LN to account for the observed data
and to offer a possible explanation for the underlying
causal interactions among genes involved in response
to alcohol. Some of the inferences made on temporal
dependencies corroborate with present knowledge on
gene regulations in mouse. Many of the other infer-
ences will be subject to further biological verification,
which we expect major discoveries to arise.

The challenge of GRN reconstruction from microar-
ray data is that typically one must select a subset
of interesting genes to render the model computable.
Approaches which filter genes or gene-gene relations



have been applied. While this leads to the improved
signal in the data, it may neglect extensive information
on highly relevant genes which are exhibiting subtle
variation in the same temporal patterns as other con-
nected genes. Rather than filtering based on statistical
effects, one could develop LN models from known
pathways and evaluate how they respond and interact
with pharmacological perturbations. This strategy can
be implemented by inferring LNs from GRNs estab-
lished by literature mining such as Ingenuity Pathways
Knowledge Base (Ingenuity Systems, Redwood City, CA) and
PathAssist (JusticeTrax Inc., Mesa, AZ). This will possibly
allow the modeling to begin at a more realistic starting
point, and will reserve statistical power for the strong
plausible relations that are previously reported.

Another important future direction is to incorporate
a more diverse set of nodes. The biological rele-
vance of an inferred LN can be substantially im-
proved if simultaneous measurements of the pro-
teome, the metabolome, and the transcriptome are
available, without major modifications to the current
algorithms. Once data are properly scaled, the method
is highly generalizable and has significant potential
for inferring temporal relations among widely diverse
biological processes. The illustration of the validity
of our results from a small time-course gene expres-
sion study indicates substantial potential for denser
sampling, and for the incorporation of additional data
representing other aspects of the neurobiological re-
sponse to alcohol, including neurohormonal, physio-
logical, and behavioral measures.
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