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Abstract:

This paper describes an approach that performs spike
sorting by a nonparametric density estimation technique
under a Bayesian framework. The technique is based on
an optimal quantization method. We performed experi-
ments on simulated and real spike signals. The results
are comparable with what is reported in the literature.
Key Words: Spike sorting, nonparametric density esti-
mation, quantization.

1. Introduction

When it is active, a neuron fires spiky signals repetitively,
called spike, at a frequency of about 10Hz. A needle-
like electrode can be used to record spike signals emitted
from nearby neurons. The process of identifying spikes
from recorded signals and assigning them to some neu-
rons is calledspike sorting. Spike sorting is a method
neuroscientists use to inspect neuron activities to inves-
tigate the neural system including functions of the brain.
As signal recording devices become increasingly power-
ful, automatic software tools for spike sorting become a
necessity, due to the large amount of data produced and
the cost of manual spike sorting. Spike sorting is an old,
but an evolving, problem, due to faster computers and
the availability of multi-electrode data. Challenges are
posed by the fact that spike signals are subject to envi-
ronmental noise and interfering spikes from surrounding
neurons, and that the shape and amplitude of the spike it-
self may change to some extent over time. The simplest
spike sorting method is by thresholding. Spike sorting
techniques previous to 1998 are reviewed in (Lewicki,
1998). More recent work is described in (Sahani, 1999;
Hulata, Segev, & Ben-Jacob, 2001; Oweiss & Ander-
son, 2002; Menne, Folkers, Malian, Maex, & Hofmann,
2002). Most performance analyses of the spike sort-
ing algorithms are qualitative. Although not necessarily
accepted uniformly, some quantitative performance in-
dices are reported: The morphological filter reported in
(Menne et al., 2002) achieved 80%±4% correct recogni-
tion on data from a simulated cortex containing 90 neu-
rons; Authors of (Hulata et al., 2001) obtain nine wavelet
bases by analyzing the data manually. Once they perform
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wavelet transform on the data, they use some clustering
method to detect spikes. They claim to achieve a recog-
nition rate of around 93% and a false alarm rate of 10%.
However, they did not evaluate their wavelet method on
separate test data.

We use optimal quantization as a non-parametric den-
sity estimation technique to represent both the uncer-
tainty associated with the spike shapes themselves and
also the environmental noise. Our algorithm includes the
following an off-line and an online component. The off-
line training component obtains a compact representa-
tion of the prior knowledge about the spike shapes. The
online spike sorting component performs detection and
sorting on single channel waveform data using the repre-
sentation obtained off-line.

This paper is organized into four sections. In Section 1
we introduce the spike sorting problem, review existing
and our approach. In Section 2, we describe the nonpara-
metric Bayesian framework for spike sorting, including
a brief introduction to the non-parametric optimal quan-
tization technique to represent prior spike shape knowl-
edge and evidence from the observed signals. In Sec-
tion 3, we present the spike sorting results obtained on a
simulated spike signal and a real spike signal. Finally, in
Section 4, we draw the conclusions and point out further
work that might be interesting to do on spike sorting.

2. A Non-parametric Bayesian Framework
for Spike Sorting

Let s be the spike shape. We want to detect it from
the observed spike signalx with the help of some prior
spike shape knowledge. We formulate this problem in
a Bayesian framework. Given the observed datax, our
goal is to find a spike shapes that maximizes the posteri-
ori probability p(s|x), which is proportional to the prod-
uct of the probability of the prior probabilityp(s) of the
spike shapes, and the conditional probabilityp(x|s) of
observing the spike signalx given a spike shapes, that
is, p(s|x) ∝ p(s) · p(x|s).

In the off-line process,p(s) is obtained, and in the on-
line process,p(x|s) is obtained. Both of these processes
make use of a non-parametric density estimation tech-
nique based on quantization. Afterp(s|x) is obtained,
we can compare this to a probability threshold and then



identify as spikes those shapes whose posterior probabil-
ity is above this threshold.

2.1 A Nonparametric Density Estimation Technique
based on Optimal Quantization

A problem in statistical learning is to estimate the prob-
ability density function (p.d.f.) from observed data. The
classical approach to solving the problem is to assume
the p.d.f. comes from a family of parametric forms, such
as the p.d.f. of the Gaussian distribution. Then the pa-
rameters are estimated from the observed data by, for ex-
ample, maximum likelihood principle. The family and a
set of parameters specify a unique p.d.f. Issues with this
parametric approach include that it usually is not clear
in advance from which distribution family the observed
data may come from. When a family is blindly chosen,
large biases may arise from a wrong assumption. One
way to reduce the biases is to select a model from mul-
tiple families. However, since the families can not de-
scribe all possible p.d.f.’s, large biases may still exist.

An alternative to the parametric approach is the non-
parametric approach, which does not assume any family
for the p.d.f. of the population where the observed data
were drawn. Thus, the biases can be controlled and mini-
mized. Typical nonparametric techniques include Parzen
windows,k-nearest neighbors, splines, and histograms.
The first three approaches become extremely computa-
tionally intensive in moderately higher dimension. An
equal spacing multi-dimensional histogram usually does
not guarantee consistency.

The nonparametric density estimation approach that
we use is based on an optimal quantization of the sample
space. We quantize the space using a multi-dimensional
non-uniform spacing grid. The grid is obtained by max-
imizing a quantizer performance measure defined as fol-
lows:

T(Q) = WJJ(Q)+WHH(Q) (1)

whereQ represents the quantizer,J(Q) is the log like-
lihood of the observed data,H(Q) is the entropy of the
observed data on the grid,WJ is the weight of the log like-
lihood, andWH is the weight of the entropy. This mea-
sure controls the over/under-fitting via the weightsWJ

andWH . We usually use non-negative values forWJ and
WH . Only the ratio of the two weights affect the quan-
tizer. WhenWJ/WH → ∞, the quantizer behaves towards
over-fitting; whenWJ/WH → 0, the quantizer behaves to-
wards under-fitting. We first obtain a quantization grid
for the observed data by a genetic algorithm. Then a den-
sity function is estimated using an approach similar to
thek-nearest neighbor smoothing. The smoothing elim-
inates zero density estimates in cells where there is no
observed data.

2.2 Representing Prior Spike Shape Probability

The prior spike shape probability density function,p(s),
indicates how often we expect to see a spike shape repre-
sented by a vectors. To estimate the probability density
function p(s), we first gather groundtruth spikes. Unfor-
tunately, such data are usually not directly available be-
cause the labor cost for labeling the spikes from recorded
signals is very high. We obtained the groundtruth by set-
ting a very high threshold on the real signals that we
have. We consider those signal chunks that cross the
threshold to be true spikes. An individual spike lasts
about 1 millisecond. Given the sampling frequency in
tens of kilo-Hertz, a discretized spike contains hundreds
of dimensions.

We perform dimension reduction before quantization
by principal component analysis (PCA). As shown in
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Figure 1: Eigenvalues of principal components of the
spikes.

Fig. 1, the eigenvalues of the first four principal vectors
are much bigger than that of the rest of the vectors, mean-
ing that they account for most of the variation in the spike
shape data set. Therefore, we decide to use the sub-space
spanned by the first four dimensions, where we will es-
timate prior spike shape probability density function. As
we can see from Fig.2, the first four principal vectors
look like spike shapes, but starting from the fifth shape,
the vectors appear more like noise than real spike. This
result agrees with the eigenvalues and endorses the se-
lection of the first four principal vectors.

Then we perform quantization. The entropy for each
dimension of the reduced shape space is calculated, to
determine the relative quantization levels of each dimen-
sion. The space is then quantized to obtain the p.d.f.p(s).
Fig. 3 shows the marginal grids of the four dimensional
quantization grid. Fig.4 shows the 2-D marginal p.d.f.’s
of the 4-D p.d.f. Fig.5 shows the 1-D marginal p.d.f.’s
of the 4-D p.d.f.
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(a) Principal shape 1.
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(b) Principal shape 2.
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(c) Principal shape 3.
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(d) Principal shape 4.
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(e) Principal shape 5.
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(f) Principal shape 6.

Figure 2: First six principal shapes.
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(a) Marginal pdf on principal axis
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(b) Marginal pdf on principal axis
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(c) Marginal pdf on principal axis
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Figure 5: 1-D marginal probability density function of the prior shape space.
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Figure 3: Quantization of the spike shape space.
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Figure 4: Prior probability density function of the spike
shape space. The 2-D marginal p.d.f.’s are actually
shown.

2.3 Representing the Evidence from Observed
Spike Signals

When a stimulus produces spikes from a single neuron,
the spikes tend to repeat themselves in similar shapes.
The observed signal is a result of the spike shape with
random noise. Therefore the repetitiveness of a similar
signal is an indication of the existence of spike events.
We perform space reduction and quantization similarly
to p(s), except that the data are now in the signal space,
rather than the shape space. Some signal vectors repre-
sent spike shapes and some do not. The signals are ob-
tained by finding a maximum value and then taking two
chunks of discrete signal samples before and after the
maximum value. We denote these vectors byx. There-
fore the conditional probabilityp(x|s) can be estimated.

The following figures show the signal space density
estimation for the signal “1channel40khz” channel one.
Fig. 6 shows the marginal grids of the four dimensional
quantization grid. Fig.7 shows the 2-D marginal p.d.f.’s
of the 4-D p.d.f. Fig.8 shows the 1-D marginal p.d.f.’s
of the 4-D p.d.f.

3. Results

3.1 Sorting on Simulated Spikes

We simulated a spike sequence of duration 7 seconds
with 40kHz sampling rate. The spike sorting results of
our algorithm are shown in Fig.9. In this particular ex-
ample, we had 15 miss-detected spikes and 5 false-alarm
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Figure 6: Quantization of the signal space.
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Figure 7: 2-D marginal probability density function of
the signal space.
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Figure 8: 1-D marginal probability density function of the signal space.

(a) Correctly detected spikes. (b) A missed spike (the true one on the right
in the bottom).

(c) A false-alarm spike (the false one on the
right at the top).

Figure 9: Sorting results on simulated spikes. In each sub-figure, the red lines in the top signal represent the detected
spike positions. The red lines in the bottom signal represent the actual position of the groundtruth spikes.



spikes for a total of 165 spike events. The average dif-
ference between the matched spikes is 0.068 millisecond
with a standard deviation of 0.41 millisecond.

3.2 Sorting on Real Spikes

We performed spike sorting on a spike signal obtained
from a monkey with 40 kHz. The sorting results are
shown in Fig.10, where the same spike signal is shown
in different scales.

4. Conclusion and Future Work

We have described a spike sorting approach based on
a nonparametric density estimation technique under a
Bayesian framework. A spike is detected based on the
product of the prior probability of its shape and the prob-
ability of its repetitiveness in the observed signal. The
two probabilities are obtained from the probability den-
sity functions of the prior shape space and the observed
signal space, respectively, by a nonparametric quantiza-
tion technique. We have demonstrated the performance
of the software on a simulated spike signal and a real
signal. In the case of the simulated spike signal, where
the groundtruth is known, we are able to calculate the
numbers of miss-detected and false-alarm spike events.
Our results show that our approach is very promising.
The fundamental reason is that we do not apply any re-
strictions on possible spike shapes, which is typically
pre-assumed in other competing algorithms. Some fu-
ture work includes using more groundtruth to build a
better prior probability density function for the shape
space. It also seems that including both relative magni-
tude and shape information might reduce the false-alarm
spike events. We will also compare the performance of
our algorithms with others.
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(a) Detected spikes. (b) Closer look. (c) Even closer look.

Figure 10: Spike sorting algorithm on a real spike signal.
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