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Abstract—We describe an integrated Bayesian solution to find a
left ventricle model, including both epicardium and endocardium
surfaces, from freehand 3-D echocardiographic images. The ob-
served images and prior shape knowledge are combined to make
the most consistent inference about unknown surface models using
the maximum à posteriorirule. Typical model-based computer vi-
sion techniques divide the overall problem into two separate low-
and high-level subproblems. Unlike previous approaches, our ap-
proach unifies these two levels through a pixel class prediction
mechanism. A putative surface model is generated from a catalog
of 86 representative surface models. For each observed pixel, its
appearance probability profile from different classes is first com-
puted. Then the class predication probability profile is also com-
puted, based only on the putative surface model. An optimal sur-
face model has the best overall match between these two profiles
for all the pixels. The probability models are obtained off-line by
the expectation maximization algorithm from 20 training studies.
Quantitative experimental results on 25 test studies show the ad-
vantage of the integrated approach.

I. I NTRODUCTION

Typical model-based computer vision techniques divide the
overall problem into two separate low- and high-level subprob-
lems. In the low level, edge detection or image segmentation
is performed. In the high level, geometric models are fit to the
features detected from the low level. This paradigm has proven
insufficient when the image quality is too poor to reliably detect
accurate features.

Echocardiography data are sparse and very noisy, making
boundary detection and segmentation of the left ventricle (LV)
very difficult in isolated images. We process a set of images
in 3D space to determine the surfaces of the LV. Prior shape
knowledge must be considered in order to obtain an accurate
surface representation. In the integrated framework, the ob-
served images and the prior shape knowledge are combined
to make the most consistent inference about unknown surface
models using the maximum̀a posteriorirule. As far as we have
found in the literature, only Mignotte and Meunier [1] have ex-
plored the idea of doing shape modeling from images without
an explicit feature detection stage.

Local smoothness is used in [2], [3]. Global parametric shape
models have been employed in [4], [5], [6], [7], [8] to enhance
the role of shape knowledge. Statistical shape models capture
both shape complexity and variations. Cooteset al [9] first sug-
gest the 2-D active shape model. Blake and Isard [10] design
the 2-D active contour models.

II. M ETHODOLOGY

The integrated approach seeks a solution that is optimal in
the sense of maximizing the posterior probabilityp(Θ|Z). A
putative surface modelΘ is generated from a catalog of rep-
resentative surface models [11]. For each pixel, its appear-
ance probability profilep(Z|Y ) from different classesY is first
computed, based on the observed pixel feature vectorZ. Then
the class predication probability profileP (Y |Θ) is computed,
based only on the putative surface modelΘ. An optimal surface
model has the best overall match between these two profiles for
all the pixels, i.e.,

p(Θ|Z) =
p(Θ)
p(Z)

∑
y

p(Z|Y = y)P (Y = y|Θ) (1)

where p(Θ) represents the prior shape knowledge. We use
a uniform distribution within the convex hull of a catalog of
86 representative LV models. Feature vectorZ includes lo-
cal pixel brightness and directional derivatives. Eq. (1) is true
under the assumption thatZ andΘ are conditionally indepen-
dent given class labelY . For the pixel appearance probability
modelp(Z|Y ), the statistically effective and computationally
efficient non-parametric optimal quantization [12] representa-
tion is employed. For the pixel class prediction probability
modelP (Y |Θ), the intensity exponential decaying parametric
model is used, in addition to a deterministic imaging simulation
process [13].

Off-line training. There are 20 studies in the training set.
They have better image quality and complete endocardium
(ENDO) and epicardium (EPI) surface models. The goal of
training is to obtain the pixel appearance and the pixel class
prediction probability models. We estimate them jointly by the
expectation maximization algorithm.

Online surface model optimization.We perform an initial
alignment of all the members in the LV surface model cata-
log using three user input landmark points: apex of ENDO,
the center of mitral valve and the center of aortic valve, and
four user input surface points on ENDO obtained from the short
axis view. We apply rotation and translation only to the surface
models in the catalog. After the initial alignment, we find a best
surface modelΘ∗, which is constrained to be a convex combi-
nation of members in the aligned catalog, such thatp(Θ|Z) as
expressed in Eq. (1) is maximized.



III. R ESULTS

We perform the experiment atend diastole, when the LV is
largest. For every study we select images from standard views
– three or four long axis views and one short axis view. The
spatial positions and orientations of these images were deter-
mined using a magnetic field tracking system. There are 25 test
studies, including 6 normal and 19 diseased, neither used in
training nor included in the catalog. We measure the projection
distance between the optimized and the ground-truth surface
models. The ground-truth models are reconstructed from man-
ual delineations. Theprojection distance from surfaceA to sur-
faceB is defined as the mean vertex projection distance from
all the vertices of surfaceA to surfaceB. Theprojection dis-
tance between surfacesA andB is the average of the projection
distances fromA to B and fromB to A. The overall distance
errors for ENDO and EPI are2.6±0.78 mm and3.2±0.85 mm
respectively. The best performance is achieved on the normal
group test studies. The diseased studies have various errors.

Fig. 1 displays the optimization results on a diseased test
study. The figure shows the original images and the imag-
ing plane intersections with the optimized surface models (red)
and the ground-truth surface models (yellow). The two surface
models agree well at places with strong contrast available, such
as the upper and lower center of the view in Fig. 1(a), the lower
parts of the view in Fig. 1(c) . However, we observe large er-
ror around the area in the upper left of the views in Fig. 1(a) .
Image dropout occurs at these places because the local surfaces
are almost parallel to the incident ultrasound beam In addition,
large errors occurs around the apex area, which is typically ei-
ther in the near field where distortions are serious or outside the
imaging area. Such places will rely more on the the prior shape
knowledge and user input points.

IV. CONCLUSION

We have presented the integrated approach to LV surface op-
timization from freehand 3-D echocardiographic images. Our
quantitative evaluation has shown this computationally inten-
sive approach performs well on a large number of various nor-
mal and diseased clinical studies.
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