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Abstract

We obtain recombination rate distribution functions for
all human chromosomes using an optimal quantization
method. This non-parametric method allows us to control
over-/under-fitting. The piece-wise constant recombination
rate distribution functions are convenient to store and re-
trieve. Our experimental results showed more abrupt dis-
tribution functions than two recently published results. In
the previous results, the over-/under-fitting issues were not
addressed explicitly. Our estimation had greater log likeli-
hood over a previous result using Parzen window. It sug-
gests that the optimal quantization technique might be of
great advantage for estimation of other genomic feature dis-
tributions.

1. Introduction

Recombination is the primary biological event pushing
evolution. Biologists are interested in a high resolution re-
combination map that presents accurately how often a re-
combination event occurs at a specific location in a chromo-
some. Linear correlations have been established between
recombination rate with factors such as Poly(A)/Poly(T)
density, CpG density, GC content density, RefSeq gen
count, PPY/PPU density, UniGene cluster count [2]; LINE
density, SINE density,(AC)n density and chromosome po-
sition [4]. To understand accurately how recombination oc-
curs, a recombination rate distribution (RRD) function can
be used to quantify the recombination events at any location
in a chromosome. The RRD functions of human chromo-

somes are first published in the Marshfield map [4]. The
Iceland map [2] also obtained RRD functions but from a
much larger sample size.

We find a RRD function that best reveals the information
contained in the data. We propose to use optimal quantiza-
tion [3], a non-parametric methodology, to estimate a piece-
wise constant probability density function (p.d.f.). The es-
timated function is optimal in that over-/under-fitting are
minimized by selecting the best control parameters. Com-
parisons made with other methods show the advantage of
our approach in terms of the cross-validated log likelihood.
In addition, the quantized p.d.f. representation is more con-
venient to use than other kernel methods such as Parzen
window or k nearest neighbor, because it can be accessed
as a table in logarithm time.

The paper is organized into five sections. In Section 1,
we introduce the RRD estimation problem and our strat-
egy. In Section 2, we explain the recombination and re-
view methods to examine recombination events and esti-
mate a RRD function. In Section 3, we describe the the-
oretical and algorithmic aspect of optimal quantization. In
Section 4, we demonstrate RRDs obtained by optimal quan-
tization and compare its performance quantitatively with the
Parzen window results. Finally in Section 5, we conclude
our study and describe some future work related to biolog-
ical feature distribution estimation that can be done using
optimal quantization.

2. Recombination Rate Distribution Function

Recombination plays a central role in molecular revolu-
tion. The mechanism of recombination can reveal directly
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how human evolution might happen. In the nucleus of each
human cell except the gamete, there are 46, or 23 pairs of,
chromosomes: 22 pairs of autosomes and 1 pair of sex chro-
mosomes [1]. The autosomes are from chromosome 1 to 22.
There are two copies of each autosome calledhomologous
chromosomes. The two sex chromosomes are eitherXX
or XY . During the reproduction of the gamete, a process
calledmeiosis, the chromosomes of the child are obtained
by combining half of the chromosomes from one parent
with half of the chromosomes from the other parent, that
is, combining 22 autosomes plus one sex chromosome from
one parent with those from the other parent. Only homol-
ogous chromosomes will be combined; the two sex chro-
mosomes always combine themselves. When each pair is
combined, the contents of the chromosomes are exchanged
at some points along the chromosomes, which could be due
to cross-over or gene conversion. Thus the child chromo-
somes do not necessarily contain exact copies of parent
chromosomes. This information exchange between parent
chromosomes is calledrecombination. Recombination rate
is defined as the number of recombination events in a unit
length of chromosome in terms of base pairs, usually in cen-
tiMorgan per Mbps (cM/Mb). The RRD function maps a
location on the chromosome to a recombination rate value.
However, experimental data on recombination are still very
limited due to the cost and complexity of experiments. As
only recently the complete human genome physical map be-
comes available, an accurate quantitative representation of
the RRD becomes possible and is under heavy investigation.

In practice, recombination events are identified using
both genetic and physical maps. On a genetic map, there
are markers with each one being a unique feature. A marker
has two or multiple forms, calledalleles. The alleles can be
identified quickly by polymerase chain reaction (PCR). Lo-
cations of markers on the physical map are determined in
advance. With markers and their locations on the physical
map, a recombination event might be identified in a practi-
cal manner without sequencing the whole genome. The res-
olution of the identified events increases with the number
of markers used. This method is illustrated in Fig. 1. The
first parent has markers as shown in Fig. 1(a) and the sec-
ond parent has the same markers but with different alleles
in Fig. 1(b). If the child has the markers shown in Fig. 1(c),
then at least one recombination event has occurred at some
location between the markers A and B. If the child has the
same alleles as their parents in Fig. 1(d), then it is unlikely
to have a recombination event between A and B if the mark-
ers are close enough. This method cannot detect the exact
location of the recombination event and it may also miss
recombination events between markers. In addition, if the
two parents carry the same set of alleles, no recombination
event between the markers can be identified. Therefore, se-
lection of markers directly affects the effectiveness of re-

--A---B--
(a) Markers on
1st parent.

--a---b--
(b) Markers on
2nd parent.

--A---b-- or --a---B--
(c) Markers on the child after recombina-
tion.

--A---B-- or --a---b--
(d) Markers on the child possibly without
recombination.

Figure 1. Identifying a recombination event
with markers. The first marker has two alleles
A and a. The second marker has two alleles
B and b.

combination identification. Typically, a good marker col-
lection should be abundant and evenly distributed across the
genome. One such marker family is microsatellites, which
are sequences in which a short motif is repeated in tandem
[1]. The motifs can be di-, tri-, or tetranucleotide repeat
units. There are about104 copies of them distributed quite
evenly over the whole genome. They are also shorter and
easy to apply PCR. In the Marshfield map [4], over 8000
microsatellites are used; In the Iceland map [2], about 5000
microsatellites are used.

The frequency of recombination varies across the
genome rather than uniformly distributed. In almost all
chromosomes, recombination is more frequent near the
telomere– the end of a eukaryotic chromosome; it is often
less frequent at thecentromerewhere two copies of the ho-
mologous chromosomes hold together. Each chromosome
is a linear structure of DNAs. We considerX, the location
of a recombination event, a random variable. Letp(x) be
the p.d.f. ofX. Let F (x) be the cumulative distribution
function (c.d.f.) ofX. The RRD functionR(x) is in pro-
portion top(x), that is:

R(x) = R0p(x) (1)

whereR0 is the total amount of recombination events ob-
served for one individual. According to the definition of
F (x), we can also calculateR(x) by:

R(x) = R0
dF (x)

dx
(2)

In the recent Iceland RRD estimation [2], they used
Eq. (1). Since its exact physical location is unknown, a
recombination event between two markers is assigned the
position of the marker with larger coordinate on the chro-
mosome. WithN recombination event locations observed,
i.e., x1, x2, · · · , xN , a p.d.f. estimation̂p(x) is obtained
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using the Parzen window method, that is:

p̂(x) =
1
N

N∑
i=1

k(x, xi) (3)

where

k(x, xi) =
{

1
∆ , |x − xi| ≤ ∆

2
0, otherwise

and ∆ is the window width or bandwidth. Then
they choose a sequence ofM equally spaced locations
y0, 2y0, 3y0, · · · ,My0 to calculate the estimated p.d.f. val-
ues. In the end, they fit splines to these points to obtain a
smooth p.d.f. The RRD is finally obtained by Eq. (1). The
critical window width parameter∆ is 3 Mbps. The sample
is drawn from 1257 meioses.

A previously published Marshfield RRD [4] used Eq. (2).
In this approach, it is not necessary to know the exact lo-
cation of each recombination event. They first compute
the empirical c.d.f.F̂ (x) from the observed recombination
events, then fit cubic splines tôF (x). They finally obtain
the RRD functionR(x) by Eq. (2). In this study, only
184 meioses are analyzed to identify recombination events,
which is a much smaller sample size compared to [2].

3. Estimating RRD by Optimal Quantization

Each RRD in [2] is a continuous function. They did not
explain how the bandwidth is chosen in the Parzen window
approach. In addition, all the splines have to be saved and
evaluated before the rate at a certain location can be cal-
culated. Optimal quantization, also a non-parametric tech-
nique, is an alternative to their approach. As we shall see,
the advantages include that optimal quantization is both sta-
tistically and computationally efficient; it is as easy to use
as table look-up; over-/under-fitting can be controlled in a
systematic way. Optimal quantization finds the most effec-
tive representation of data in terms of both CPU cycles, the
memory requirement and the targeted performance. Intu-
itively, an optimal quantization algorithm locates the most
important regions which are then finely quantized, while
less important regions are coarsely quantized. Importance
determination relies on the pattern recognition task. It could
be average log likelihood, entropy, or some combination
of them. Other methods, e.g., kernel methods, treat every-
where in the space equally without the prioritized resource
allocation. For the less important regions, there is the po-
tential wasting of resources.

Our methodology obtains a variable bin width p.d.f. es-
timation by optimizing a quantizer measure defined on a fi-
nite sample, where all bins will have non-zero p.d.f. values.
The measure combines convexly average log likelihood and
entropy. We perform two steps to find a p.d.f. Dynamic
programming is employed to find a quantization of the real

axis maximizing the quantizer measure. ensuring the adap-
tivity to data and overcoming the statistical inefficiency of
an equal bin width histogram. The second step obtains a
locally averaged p.d.f. estimate for each bin. We use a com-
putationally efficient algorithm for smoothing, which guar-
antees the consistency of the p.d.f. estimates while avoid-
ing the computation complexity of a kernel type smoothing
method. The p.d.f. thus produced is optimal in both the
adaptivity and consistency senses.

There are four parameters in our optimal quantization
framework: WJ , the weight of log likelihood,WH , the
weight of entropy, number of quantization levelsL, number
of neighborsk. WJ , WH andL control the over-/under-
fitting in finding the optimal intervals;k controls the over-
/under-fitting in estimating the p.d.f. value of each bin. We
estimate these parameters by 5-fold cross-validation on the
training data. This method is computationally intensive but
it can find a reasonably good set of parameters in the spec-
trum from under- to over-fitting.

4. Experimental Results

We perform optimal quantization on the data from [2].
The genetic distances of the markers are given, correspond-
ing to the empirical c.d.f. of the recombination events. In
the optimal quantization experiment, we first obtain the
control parametersWJ , WH , L andk by a 5-fold cross-
validation. The values ofWJ andWH range from 0 to 1
with a step of 0.1. The value ofL ranges from 2 to28

in the power of 2. The value ofk ranges from 1 to36

in the power of 3. Second, the p.d.f. is estimated, using
the best parameters just obtained, on all the recombination
events of each chromosome. The estimated RRD functions
of chromosomes 3, 13, 22 and X are shown in Fig. 2 to
5. Recombination is much more active around the ends of
chromosomes than the centers. Our RRD’s change more
drastically than the ones shown in [2, 4]. Since all our con-
trol parameters are cross-validated, it is very likely that the
recombination rate changes indeed more abruptly than the
much more smooth curves published before. To fit splines
on our estimation result could make the curve smoother, but
it requires further validation of the smoothness. We further
compare quantitatively the performance of optimal quan-
tization with Parzen window approach. We did not apply
splines to make the comparison fair. The evaluation is done
by a 5-fold cross-validation. The performance measure is
the log likelihood of the left-out data reserved for test, us-
ing the p.d.f. estimated from the the data without the left-out
data. The average and the standard deviation of the five log
likelihoods for each chromosome are shown in Table 1. The
average log likelihoods of the p.d.f. obtained by optimal
quantization are consistently higher than those by Parzen
window method. The standard deviations of both are sim-
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ilar, with Parzen window results slightly better on most of
the chromosomes. Therefore the optimization quantization
approach provides a better RRD estimation than that of the
Parzen window.

Table 1. Performance comparison between
optimal quantization and Parzen window.

Chromosome average log likelihood standard deviation
Opt. Quant. Parzen Window Opt. Quant. Parzen Window

1 -19.11 -19.17 0.03 0.01
2 -19.10 -19.21 0.05 0.02
3 -18.90 -19.05 0.04 0.04
4 -18.91 -18.98 0.03 0.02
5 -18.79 -18.91 0.04 0.03
6 -18.72 -18.88 0.05 0.03
7 -18.69 -18.87 0.03 0.02
8 -18.60 -18.78 0.02 0.01
9 -18.42 -18.52 0.04 0.03
10 -18.55 -18.69 0.05 0.05
11 -18.53 -18.65 0.06 0.03
12 -18.57 -18.63 0.03 0.04
13 -18.02 -18.32 0.06 0.04
14 -17.94 -18.14 0.07 0.07
15 -17.87 -18.17 0.06 0.07
16 -18.05 -18.18 0.07 0.04
17 -17.99 -18.14 0.05 0.05
18 -18.04 -18.16 0.08 0.06
19 -17.70 -17.95 0.09 0.05
20 -17.62 -17.70 0.09 0.03
21 -17.05 -17.28 0.06 0.05
22 -16.96 -17.16 0.08 0.05
X -18.42 -18.53 0.04 0.03
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Figure 2. Chromosome 3
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Figure 3. Chromosome 13

5. Conclusion and Future Work

Accurate estimation of the RRD across the entire
genome is crucial to understand evolution quantitatively.
For example, recombination rate has been known to be lin-
early correlated with the locations of retrotransposable el-
ements such as long interspersed elements. In contrast to
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Figure 4. Chromosome 22.
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Figure 5. Chromosome X.

the Parzen window approach used in previously reported
RRD’s, we have used an optimal quantization approach to
obtain piecewise constant RRD’s. The optimal partition of
each chromosome is obtained first and then the recombina-
tion rate in each bin is computed by a neighborhood aver-
aging. Our 5-fold cross-validation result has shown that the
performance of optimal quantization in terms of log likeli-
hood is better than the Parzen window approach. The quan-
tization approach produces RRD’s that are much easier to
use by table look-up than the continuous curves produced
by Parzen window and splines. Quantization is an attractive
approach to represent the genome-wide distributions of bi-
ological events, because of the controled over-/under-fitting
and the convenience of use. We further plan to obtain Gua-
nine + Cytosine (GC) percentage distribution by this ap-
proach. CurrentlyGC percentages are given by 20Kb win-
dows which obviously is not the most efficient way to do
the whole genome of 3 Gb. An even further goal is to use a
multidimensional quantization approach to represent differ-
ent biological features and to look at statistically significant
relations revealed by the representation.
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