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Abstract: An efficient and exact dynamic programming algorithm is

introduced to quantize a continuous random variable into a discrete ran-

dom variable that maximizes the likelihood of the quantized probability

distribution for the original continuous random variable. Quantization

Copyright c© 2008 Inderscience Enterprises Ltd.



2 M. Song, R.M. Haralick, and S. Boissinot

is often useful before statistical analysis and modeling of large discrete

network models from observations of multiple continuous random vari-

ables. The quantization algorithm is applied to genomic features includ-

ing the recombination rate distribution across the chromosomes and the

non-coding transposable element LINE-1 in the human genome. The

association pattern is studied between the recombination rate, obtained

by quantization at genomic locations around LINE-1 elements, and the

length groups of LINE-1 elements, also obtained by quantization on

LINE-1 length. The exact and density-preserving quantization approach

provides an alternative superior to the inexact and distance-based uni-

variate iterative k-means clustering algorithm for discretization.
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combination Rate Distribution; Transposable Elements; LINE-1.
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1 Introduction

Quantization is a monotonically increasing transformation that converts a con-

tinuous random variable to a discrete random variable. Quantization functions

that better preserve the original probability density function (p.d.f.) legitimize

the transfer of statistical analysis and modeling performed on the discrete random

variable back to the original continuous random variable. We present an efficient

and exact algorithm that achieves such a density-preserving quantization by dy-

namic programming. The optimality of the discretization is guaranteed by a gen-

eral mapped additivity satisfied by all major quantization criteria. In our optimal

quantization algorithm, the most important regions are finely quantized, while less

important regions are coarsely quantized, statistically much more efficient than a

uniform quantization. Other methods, e.g., kernel methods, treat everywhere in a
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space equally without the prioritized resource allocation. For the less important re-

gions, there is the potential wasting of resources. The algorithm can work on either

continuous data points or counts of data already accumulated in finer-than-desired

bins. The number of quantization levels is determined by either the Bayesian infor-

mation criterion – a function of the log likelihood, the sample size, and the number

of quantization levels, or cross validation.

Graphical modeling of multiple random variables has motivated continued re-

search on quantization algorithms. A graphical model uses a graph to represent

the joint probability distribution function of multiple random variables. Each node

in the graph represents a random variable. Edges between nodes encode statistical

dependencies among variables. The joint probability distribution function can be

decomposed to the product of conditional probability functions of variables at each

node given their parent nodes. A graphical model of continuous random variables

typically makes parametric assumptions on the conditional probabilities for each

node in the graph, but not so for a graphical model of discrete random variables.

Thus discretization is often necessary for graphical modeling if no prior knowledge is

available on the forms of conditional probabilities for each continuous random vari-

able in question. Additionally, there are more alternatives (Margaritis and Thrun,

2001) to determine statistical independencies between discrete random variables

than for continuous ones when the underlying p.d.f. is unknown.

Relevant to our work are approaches that find a quantization of the data by

optimizing an objective function. Entropy (Haralick, 1976), likelihood (Hearne

and Wegman, 1992), and distance have been used as objective functions. Among

these criterions, only likelihood ties directly to the p.d.f. of the original continu-

ous random variable. A less-known optimal solution (Wu, 1992) using dynamic

programming has been provided for the univariate k-means problem. Fulton et al.

(1995) have later used dynamic programming to find an optimal quantization to

classify a univariate sample. However, dynamic programming has not been used in

density-preserving quantization. Our methodology obtains a non-uniform quanti-
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zation by optimizing an objective function that combines likelihood and entropy.

Optimal quantization ensures the adaptivity to the data and overcomes the statis-

tical ineffectiveness of uniform quantization.

We applied our quantization algorithm to genomic features including the recom-

bination rate and the distribution of Long Interspersed Nuclear Element LINE-1

(L1) in the human genome. The association pattern is studied between the recom-

bination rate, obtained by quantization at genomic locations around L1 elements,

and the length groups of L1 elements, also obtained by quantization on L1 length.

The paper is organized into seven sections. Following Section 1 the introduction,

we define the density-preserving quantization objective function in Section 2; the

optimality condition for efficient finding a quantization by dynamic programming is

discussed in Section 3; the dynamic programming algorithm for the quantization is

designed and analyzed in Section 4; quantization results of the recombination rate

distribution function in human genome are presented in Section 5; the association of

quantized length groups of L1 with the recombination rate is discovered in Section 6;

finally, we draw our conclusions in Section 7.

2 The Likelihood of Quantization

We define and justify a quantization objective function that includes the like-

lihood and entropy measures on the observed data set. Let X be a continuous

random variable with p.d.f. p(x). Let calligraphic X = 〈x1, x2, . . . , xN 〉 be a sorted

sequence of a random sample of size N from X, where x1 ≤ x2 ≤ . . . ≤ xN . We

define Xn
m as the subsequence 〈xm, xm+1, . . . , xn〉. Let Q be an L-level quantization

with decision boundaries B = {b0, b1, . . . , bL}, b0 < b1 < . . . < bL. Let ∆(q) be the

width of bin q. Let Nq be the total number of data points in bin q. Let p̂(x) be the

p.d.f. derived from the histogram of the observed data using quantization Q.
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To preserve the original p.d.f. p(x), one can minimize the Kullback-Leibler di-

vergence from p̂(x) to p(x), defined as

DKL(p||p̂) =
∫
p(x) log

p(x)
p̂(x)

dx = E[log p(X)]−E[log p̂(X)].

As p(x) is fixed, minimizing DKL(p||p̂) is equivalent to maximizing E[log p̂(X)].

Let p̄q be the estimated average probability density of bin q computed by

(1) p̄q =
Nq/N

∆(q)
.

We estimate E[log p̂(X)] by the average sample log likelihood. Thus the log likeli-

hood of X for quantization Q is

(2) J(X|Q) = E[log p̂(X)] =
1
N

L∑
q=1

Nq log p̄q =
L∑

q=1

J(X|q),

where

J(X|q) =
Nq

N
log p̄q

is the contribution from the single bin q.

While entropy has been utilized as a class impurity measure (Breiman et al.,

1984), we use entropy to characterize the generalization ability of quantization.

Maximizing entropy corresponds to minimizing information loss. Entropy is defined

by

(3) H(X|Q) = −
L∑

q=1

Nq

N
log

Nq

N
=

L∑
q=1

H(X|q),

where

H(X|q) =
Nq

N
log

N

Nq

is the contribution from the single bin q. Examples of maximum entropy quan-

tization include equal probability quantization (Haralick et al., 1973), histogram

equalization (Jain, 1989), Voronoi tessellation (Voronoi, 1908), or more generally,

nearest neighbor partitions (Gersho and Gray, 1992).
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In contrast to likelihood, entropy is not a direct performance measure of pattern

recognition test results. Rather, the entropy measure in our context controls over-

fitting. The larger the entropy, the less likely the possibility of over-quantization.

We define the quantization objective function or performance measure as

(4) T (X|Q) = wJJ(X|Q) + wHH(X|Q)

with

wJ + wH = 1, wJ , wH ≥ 0,

where wJ and wH are given weights for log likelihood and entropy, respectively.

This first term will allow a best fit to the data while the second term prevents

over-fitting. If we define T (X|q), the contribution from a single bin q, as

T (X|q) = wJJ(X|q) + wHH(X|q).

T (X|Q) can be written in an additive form as

(5) T (X|Q) =
L∑

q=1

T (X|q)

A data-driven strategy is to determine the coefficients wJ , wH through cross

validation. The values of wJ , wH that maximize the likelihood of the left-out fold

are selected to be the coefficients. The number of quantization levels is determined

by either the Bayesian information criterion – a function of the log likelihood, the

sample size, and the number of quantization levels, or cross validation.

Example. We illustrate with a Chi-squared example that contrasts maximum

likelihood and maximum entropy quantization. Our example has 1000 data points

generated using a Chi-squared distribution with 4 degrees of freedom. The number

of quantization levels was 8. The density estimates are shown in Fig. 1. The dashed

line is the original Chi-squared p.d.f. In Fig. 1(a), it is evident that the underlying

density changes much more rapidly in [0, 2] than in [2,∞). The bins are narrower

for the region from 0 to 2 than for the region above 2, corroborating the consistency

result in (Scott, 1992). In Fig. 1(b), the bins for the region around the mode at 2
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(a) Maximum likelihood quantization (wJ = 1, wH = 0).

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

(b) Maximum entropy quantization (wJ = 0, wH = 1).

Figure 1: Density estimates of Chi-squared data using optimal quantization.
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are narrower than the region further away from the mode. The density of the region

around the mode is larger than other regions. When entropy is maximized, each

bin contains about the same number of points. This naturally leads to narrower

bins for regions of higher density and wider bins for regions of lower density. The

rationale behind the entropy measure is that the least commitment should be made

to the sample. This controls the generalization ability of the quantization. On the

other hand, the maximum likelihood approach finds the best fit to the data and it

may over-fit. Therefore, it is necessary to combine the two measures in a controlled

fashion as we have done in defining T (X|Q), which is especially important when

the sample size is small.

3 The Optimality Condition for Quantization using Dynamic Program-

ming

Given the sorted data sequence X and the number of quantization levels L,

the goal of quantization is to find an optimal quantizer Q∗ such that a pre-defined

objective function T (X|Q) is maximized by Q∗. An efficient solution of such a

problem is still open for multivariate random variables. However, an efficient dy-

namic programming solution exists for optimal quantization of a univariate random

variable given that the quantization performance measure satisfies a very general

mapped additivity condition.

Definition 3.1. (Sub-quantizer) Qu
r is called a sub-quantizer of quantizer Q if it has

u − r + 1 quantization levels and the decision boundaries are the same with those

for intervals from r to u of Q. We define T (Xn
m|Qu

r ) as the performance measure

of the sub-quantization, evaluated on the subsequence Xn
m of X that falls in the bins

of Qu
r .

The performance measure of a sub-quantizer is exactly the contributions from the

data points and intervals it covers. Notice that such defined sub-quantizer per-
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formance measure may be different from the performance measure of an isolated

quantizer that covers just the same points and intervals. For the performance mea-

sure defined in Eq. (12) that involves Eqs. (2) and (3), N is still defined on the

overall data set XN even when computing sub-quantizer performance measures.

Definition 3.2. (Mapped additivity) The mapped additivity condition is that the

mapped performance measure of any quantizer Q on a given data set is additive

over mapped performance measures of any combination of sub-quantizers of Q, when

there is a monotonically increasing function that can achieve the mapping. Let g(x)

be such a monotonically increasing function defined on the domain of T (X|Q). The

mapped additivity can be written as

(6) g(T (X|Q)) =
M∑

j=1

g(T (Xnj
mj
|Quj

rj
)), for any Q, 0 < M ≤ L,X .

Lemma 3.3. (Optimal sub-quantizer) Let quantizer Q∗, among all the quantizers

that have L quantization levels, maximize the performance measure T (X|Q) on the

data set X of size N . Let xn be the largest element in interval q of quantizer Q∗.

Then the sub-quantizer Q∗q1 , among all the sub-quantizers that have q quantization

levels and xn as their largest element in interval q, maximizes the performance

measure T (Xn
1 |Q

q
1), i.e. T (Xn

1 |Q
∗q
1 ) = max

Qq
1

T (Xn
1 |Q

q
1).

Proof by contradiction. By the mapped additive property of T ,

g(T (X|Q∗)) = g(T (Xn
1 |Q

∗q
1 )) + g(T (XN

n+1|Q∗Lq+1))

Since xn is always the largest element of interval q, the second term T (XN
n+1|Q∗Lq+1),

which is the performance measure in the last L−q intervals on data {xn+1, · · · , xN},

would not be affected by the choice of Q∗q1 .
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Assume that Q̂q
1 was another sub-quantizer that quantizes Xn

1 into q intervals

with xn being the largest element in interval q that does better in performance than

Q∗q1 , that is,

(7) T (Xn
1 |Q̂

q
1) > T (Xn

1 |Q
∗q
1 ).

We could create a new quantizer Q̂ by combining the sub-quantizer Q̂q
1 and Q∗Lq+1,

which has the performance measure

g(T (X|Q̂))

=g(T (Xn
1 |Q̂

q
1)) + g(T (XN

n+1|Q∗Lq+1))

>g(T (Xn
1 |Q

∗q
1 )) + g(T (XN

n+1|Q∗Lq+1))

=g(T (X|Q∗)).

By the monotonically increasing property of g(x), the above leads to

T (X|Q̂) > T (X|Q∗).

This conclusion contradicts the condition that T (X|Q∗) is the maximum perfor-

mance measure on XN
1 among all quantizers with L levels. Then the assumption

made in Eq. (7) must be incorrect. Thus

(8) T (Xn
1 |Q

∗q
1 ) ≥ T (Xn

1 |Q̂
q
1)

must be true. Therefore, T (Xn
1 |Q

∗q
1 ) maximizes the performance measure on the

subsequence Xn
1 over q quantization levels, that is,

T (Xn
1 |Q

∗q
1 ) = max

Qq
1

T (Xn
1 |Q

q
1).

�
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Next, we establish the optimality of quantization by dynamic programming

under the mapped additivity condition.

Theorem 3.4. If T (X|Q) satisfies the mapped additivity condition defined in Eq. (6),

finding an optimal quantization Q∗ of L levels to maximize T (X|Q) can be solved

exactly using dynamic programming by the recurrence

(9) T [n, q] =


0 n = 0 or q = 0

max
1≤i≤n

T [i− 1, q − 1] + g(T (Xn
i |Qq

q)), 1 ≤ n ≤ N, 1 ≤ q ≤ L,
,

and the optimal performance measure is

T (X|Q∗) = max
Q

T (X|Q) = g−1(T [N,L]).

Proof. By the recursive definition of T [n, q] in Eq. (9), we must have

T [n, q] = max
Qq

1

g(T (Xn
1 |Q

q
1)),

due to Lemma 3.3, i.e., T [n, q] must correspond to the optimal mapped performance

measure that can be achieved for the first n points over q quantization levels. Thus

T [N,L] corresponds to the optimal performance measure for the entire data set with

L quantization levels. Therefore, the inversely mapped value g−1(T [N,L]) achieves

the optimal performance measure T (X|Q∗) obtained by an optimal quantizer Q∗.

�

With g(x) = x and under the constraint that a decision boundary in Q must be

a middle point between some pair of consecutive distinct points, T (X|Q) as shown

in Eq. (5) meets the mapped additivity requirement. In addition to our definition of

T (X|Q), many problems in data mining involve performance measures that satisfy

such a condition. Examples include k-means clustering operating in any metric

space, and discretization that maximizes classification accuracy using either class

purity entropy or percentage of correct classifications.
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4 Maximum Likelihood Quantization using Dynamic Programming

As the optimality condition Eq. (6) holds for T (X|Q), we can use dynamic

programming to find an optimal quantization that maximizes T (X|Q). To avoid

over-fitting, we require a minimum number of k data points in each bin and that

identical ones are put into the same bin. We only set a decision boundary in

the middle of two consecutive and distinct data points. This affects the range of

J(X|Q), but it is trivial when the sample size is not too small. This restriction

prevents J(X|Q) from overflow. Let T be an (N + 1)× (L+ 1) matrix, whose entry

T [n, q] (0 ≤ n ≤ N, 0 ≤ q ≤ L) is the maximum performance measure from bin 1 to

q when xn is the largest data in bin q. Let I be an (N + 1)× (L+ 1) matrix, whose

entry I[n, q] (0 ≤ n ≤ N, 0 ≤ q ≤ L) is the index to the smallest element in bin

q such that T [n, q] is achieved. Let T 1 be an N × N matrix, whose entry T 1[i, n]

(1 ≤ i ≤ n ≤ N) is the performance measure contributed by a sub-quantizer with

a single bin containing exactly xi to xn, that is,

T 1[i, n] = T (Xn
i |Qq

q), ∀q ∈ {1, 2, . . . , L}

The dynamic programming for finding a quantization to maximize T [N,L] is de-

scribed below.

Initialization – T [n, q] is set to zero when either no point is covered (n = 0) or

no quantization is applied (q = 0) as in Eq. (10). I[n, q] is initialized as in

Eq. (11): I[0, 0] = 0 indicates the halting of backtrack; The -1 values indicate

that those locations are invalid as the quantization would either on an empty
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set, or there would be more levels than points, or some bins would be empty.

T [n, q] = 0, n = 0 or q = 0 (10)

I[n, q] =



0, n = 0, q = 0

−1, n = 0, q > 0; or n > 0, q = 0

−1, 0 ≤ q < max(1, n− (N − L)), n 6= 0, q 6= 0

−1, min(n,L) < q ≤ L, n 6= 0, q 6= 0

(11)

Feasible decision boundary index set – The indices of the feasible data for

being the smallest element in bin q form the feasible decision boundary index

set

An
q = {i|i ≤ n−k+1, I[i−1, q−1] 6= −1, xi−1 6= xn, I[n, q] 6= −1, xn 6= xn+1}.

The inequality i ≤ n− k+ 1 guarantees that at least k data points are in bin

q; I[i− 1, q − 1] 6= −1 states that xi−1 must be feasible for the largest point

in the previous bin q− 1; xi−1 6= xn enforces that the feasible largest point in

the previous bin q−1 must not be the same as xn, to avoid splitting identical

data points into different bins; xn 6= xn+1 is also not to split identical data

points; I[n, q] 6= −1 asserts that xn must be feasible for the largest point of

bin q.

Recurrence – If An
q is empty, then I[n, q] , −1, meaning xn does not qualify for

the largest point in bin q. Otherwise,

T [n, q] , max
i∈An

q

T [i− 1, q − 1] + T 1[i, n], (12)

I[n, q] , argmax
i∈An

q

T [i− 1, q − 1] + T 1[i, n]. (13)

Algorithm 1 Find-Optimal-Quantization fills matrices T and I row by row using

the recurrence equations. The range limit of q in line 5 is equivalent to filling the
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lower left and upper left corners of matrix I with -1. The actual initialization of

the first column of I is implicit from line 7 to 12. Line 15 decides the feasible

decision boundary set. Lines 17 and 18 implement the recurrence equation if A is

not empty. Matrix I is returned for backtracking.

Algorithm 1 Find-Optimal-Quantization(X , L, k)

1: Sort X in non-decreasing order if not already so
2: Initialize T and I;
3: for n← 1 to N do
4: Calculate the n-th column of T 1;
5: for q ← max(1, n− (N − L)) to min(n,L) do
6: if n 6= N and xn = xn+1 then
7: I[n, q]← −1;
8: else if q = 1 then
9: if n ≥ k then

10: T [n, q]← T 1[1, n],I[n, q]← 1;
11: else
12: I[n, q]← −1;
13: end if
14: else
15: A ← {i|q ≤ i ≤ n− k + 1, xi−1 6= xn, I[i− 1, q − 1] 6= −1, xn 6= xn+1};
16: if A 6= ∅ then
17: T [n, q]← max

i∈A
T [i− 1, q − 1] + T 1[i, n];

18: I[n, q]← argmax
i∈A

T [i− 1, q − 1] + T 1[i, n];

19: else
20: I[n, q]← −1;
21: end if
22: end if
23: end for
24: end for
25: return I;

Once matrix I is determined, an optimal quantization can be retrieved by Alg. 2

Backtrack(X , I). Backtracking starts from I[N,L] and traces back to I[0, 0]. Two

dummy data points −∞ and +∞ are introduced in line 2. If a finite range quantizer

is needed, we can set them to x1 − δ and xN + δ instead, where δ is a quantity

not larger than the data resolution. When the performance measure contains the

average log likelihood, we shall use finite width intervals. Since the value of I[n, q]

is the index to the smallest point in interval q if xn is the largest point of interval

q, I[n, q]−1 must be the index to the largest point in interval q−1. The backtrack
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proceeds until q = 0. Each decision boundary is set to the middle of two adjacent

points in different intervals (line 4).

Algorithm 2 Backtrack(X , I)

1: n← N , q ← L;
2: x0 ← −∞, xN+1 ← +∞;
3: while q 6= 0 do
4: bq ← xn+xn+1

2 ;
5: n← I[n, q]− 1, q ← q − 1;
6: end while
7: b0 ← x0;
8: return Q;

Theorem 4.1. The dynamic programming algorithm (Alg. 1) has time complexity

O(LN2). The backtrack algorithm (Alg. 2) has time complexity O(L).

Proof. O(N logN) is used in sorting the data. O(LN2) is used for filling in matrix

T and I. Brute force calculation of matrix T 1 can take up to O(N3), immediately

making the algorithm impractical to use when N is moderately large. Since T 1[i, n]

can be calculated from its neighbor T 1[i−1, n] or T 1[i+ 1, n] in constant time with

minor memory costs, only O(N2) is used for filling in matrix T 1. So Alg. 1 Find-

Optimal-Quantization has O(N logN + N2 + LN2) = O(LN2) as its overall time

complexity.

O(L) is spent backtracking the optimal intervals, since the while-loop has exactly

L iterations and within each iteration it takes constant time. �

Theorem 4.2. The dynamic programming algorithm (Alg. 1) has space complexity

O(LN).

Proof. In the most straightforward implementation, N(N+1)/2 would be needed

to store matrix T 1, which can actually be reduced to linear space. When the n-th

rows of T and I are calculated, only the n-th column of T 1 is used and this column

will not be used again. Thus, during any iteration of the for-loop on n, we save

only the n-th column of T 1. This will reduce the space needed for T 1 from N2 to
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N . We need 2LN space for matrices T and I. So the total space complexity is

O(2LN +N) = O(LN), which is the original claim. �

The dynamic programming algorithm taking sample points can be readily changed

to apply to merge counts of data already accumulated in finer-than-desired bins,

because the performance measure uses only counts of data within a bin and the bin

widths rather than the actual values of those points.

5 Estimation of Recombination Rate Distribution over Chromosomes

by Quantization

Recombination is a biological phenomenon that is of central importance to the

fields of genetics and evolutionary biology. In the nucleus of each human cell (ex-

cept the haploid gametes) each chromosome (except the sex chromosomes) comes

in two copies called homologous chromosomes, one chromosome coming from the

mother and one from the father. During meiosis (that is the formation of four hap-

loid gametes from a diploid cell) homologous chromosomes exchange their genetic

materials in a process called recombination. Thus, the chromosomes at the next

generation do not contain the same genetic information as the parent’s chromosomes

but instead are a mosaic of alleles from the mother’s and father’s chromosomes. The

study of recombination is important to the field of molecular evolution because the

local rate of recombination affects the efficiency of natural selection. Recombination

rate (RR) is defined as the number of recombination events in a unit length of chro-

mosome in terms of base pairs (bps), usually in centiMorgan per Mbps (cM/Mb).

The RR distribution (RRD) function maps a location on the chromosome to an RR

value. However, observing recombination events has been limited due to the cost

of experiments. As the complete human genome physical map becomes available,

an accurate quantitative representation of the RRD becomes possible.

Recombination events are identified using both genetic and physical maps. On

a genetic map, each marker represents a unique feature. A marker has two or
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multiple forms, called alleles. The alleles can be identified by polymerase chain

reactions. Locations of markers on the physical map are determined in advance.

Markers make detection of recombination events possible without sequencing the

entire genomes of generations. The resolution of the identified events increases with

the number of markers. This method is illustrated in Fig. 2. The first parent has 2

markers A and B (Fig. 2(a)) and the second parent has the same markers but with

different alleles a and b (Fig. 2(b)). If a child has the markers as in Fig. 2(c), then

at least one recombination event has occurred at some location between markers

A and B. If a child has the same alleles as their parents as in Fig. 2(d), then

it is unlikely to have a recombination event between A and B if the markers are

close enough. This method cannot detect the exact location of a recombination

(a) Markers on 1st parent: (b) Markers on 2nd parent:
----A-----B---- ====a=====b====

×
↓

(c) Markers on a child after recombination:
----A--===b==== or ====a==---B----

(d) Markers on a child possibly without recombination:
----A-----B---- or ====a=====b====

Figure 2: Identifying a recombination event with markers. One marker has two
alleles A and a; the other has two alleles B and b.

event or it may miss a recombination event between markers. In addition, if the

two parents carry the same set of alleles, no recombination event between the

markers may be identified. Therefore, selection of markers directly affects the

effectiveness of recombination detection. Typically, a good marker collection should

be abundant, hyper-variable, and evenly distributed across the genome. One such

family of markers is microsatellites, which are short sequences of motifs in tandem

(Brown, 1999). The motifs can be di-, tri-, or tetra-nucleotide repeat units. In the

Marshfield recombination map (Yu and et al., 2001), over 8,000 microsatellites are

used; in the Iceland recombination map (Kong and et al., 2002), there are 5,000

microsatellites.
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The frequency of recombination is not uniform across the genome: More frequent

near the telomere – the end of a eukaryotic chromosome – and less frequent at the

centromere where two copies of the homologous chromosomes hold together. We

consider X, the location of a recombination event, a random variable. Let p(x) be

its p.d.f. Let F (x) be its cumulative distribution function (c.d.f.).

The RRD function R(x) is in proportion to p(x) defined as R(x) = R0p(x),

where R0 is the total amount of recombination events observed on a single chro-

mosome of an individual. This definition is used in the Iceland RRD estimation

(Kong and et al., 2002). Since its exact physical location is unknown, a recombina-

tion event between two markers is assigned the position of the marker with larger

coordinate on the chromosome. With N recombination event locations x1, x2, · · · ,

xN observed, an estimated p.d.f. p̂(x) is obtained using the Parzen window method

in (Kong and et al., 2002)

(14) p̂(x) =
1
N

N∑
i=1

k(x, xi),

where

k(x, xi) =


1
∆ , |x− xi| ≤ ∆

2

0, otherwise
,

and ∆ is the bandwidth. Then they choose a sequence of M equally spaced locations

y0, 2y0, 3y0, · · · ,My0 to calculate the estimated p.d.f. values. In the end, they fit

splines to these points to obtain a smooth p.d.f p(x) and then obtain R(x). The

critical bandwidth parameter ∆ is 3 Mbps. The sample is drawn from 1257 meioses.

Another RRD is defined by R(x) = R0
dF (x)

dx , used by the Marshfield RRD (Yu

and et al., 2001). In this approach, it is not necessary to know the exact location

of each recombination event. They compute the empirical c.d.f. F̂ (x) from the

observed recombination events, then fit cubic splines to F̂ (x) and then obtain the

RRD. In this study, only 184 meioses are analyzed to identify recombination events,

which is a much smaller sample size compared to (Kong and et al., 2002).
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The RRDs in (Kong and et al., 2002) are represented as continuous functions,

with empirically chosen bandwidth ∆. All the splines are saved and must be eval-

uated to calculate RRD at a location.

Alternatively, we performed optimal quantization on the genetic distances of

selected markers (Kong and et al., 2002), given as the empirical c.d.f. of the recom-

bination events. We first obtained the control parameters wJ , wH , L, and k by a

5-fold cross-validation. The values of wJ and wH range from 0 to 1 with a step of

0.1. L ranges from 2 to 28 in powers of 2. k ranges from 1 to 36 in powers of 3.

Second, using the best parameters, a p.d.f. was estimated, on all the recombination

events for each chromosome. The estimated RRD functions of chromosomes 3 and

X are shown in Fig. 3 and 4. Recombination is much more active around the ends

of chromosomes than the centers. Our RRDs show more fluctuations than those

shown in (Kong and et al., 2002; Yu and et al., 2001). Since our control param-

eters are all cross-validated, it is very likely that the RRDs indeed change more

abruptly than the much more smooth curves published before. To fit splines on our

estimation result could make the curve smoother, but it requires validation of the

smoothness. We further compare quantitatively the performance of optimal quan-

tization with the Parzen window method. To make the comparison fair, we did not

apply splines. The evaluation is done by a 5-fold cross-validation. The performance

measure is the log likelihood of the left-out data reserved for test, using the p.d.f.

estimated from the data not using the left-out data. The average and the standard

deviation of the cross-validated log likelihood for each chromosome are shown in

Table 1. The average log likelihoods of the p.d.f. obtained by optimal quantization

are consistently higher than those by the Parzen window method. The standard

deviations of both are similar, with Parzen window results slightly smaller on most

of the chromosomes. Therefore the optimization quantization approach provides a

better RRD estimation than that of the Parzen window.



Maximum likelihood quantization of genomic features 21

Table 1 Comparison between optimal quantization & Parzen window.

Chromosome Average Log Likelihood Standard Deviation
Quantization Parzen Window Quantization Parzen Window

1 -19.11 -19.17 0.03 0.01
2 -19.10 -19.21 0.05 0.02
3 -18.90 -19.05 0.04 0.04
4 -18.91 -18.98 0.03 0.02
5 -18.79 -18.91 0.04 0.03
6 -18.72 -18.88 0.05 0.03
7 -18.69 -18.87 0.03 0.02
8 -18.60 -18.78 0.02 0.01
9 -18.42 -18.52 0.04 0.03
10 -18.55 -18.69 0.05 0.05
11 -18.53 -18.65 0.06 0.03
12 -18.57 -18.63 0.03 0.04
13 -18.02 -18.32 0.06 0.04
14 -17.94 -18.14 0.07 0.07
15 -17.87 -18.17 0.06 0.07
16 -18.05 -18.18 0.07 0.04
17 -17.99 -18.14 0.05 0.05
18 -18.04 -18.16 0.08 0.06
19 -17.70 -17.95 0.09 0.05
20 -17.62 -17.70 0.09 0.03
21 -17.05 -17.28 0.06 0.05
22 -16.96 -17.16 0.08 0.05
X -18.42 -18.53 0.04 0.03
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Figure 3: Chromosome 3.
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Figure 4: Chromosome X.

6 Localized Study of Recombination Rate within Length Groups of L1s

L1 retrotransposons have significantly affected the structure and function of

mammalian genomes, including the human genomes. They have been a source

of genetic novelty and their activity accounts for at least 30% of the size of our

genome. However, their replicative success is difficult to reconcile with the potential

damages they can impose on their host’s genome. The effect that L1 elements can

have on the fitness of individuals remains a matter of debate. One approach used

to understand their impact is to look at their distribution in the genome relative to

the local recombination, The rationale is that if L1 elements of a given length are

deleterious they should accumulate in regions of low recombination.

Therefore we decided to examine how RR near an L1 element depends upon the

length of the element. A linear regression could not adequately capture subtlety of

the RR-length interaction. Given the relatively large sample size of L1s, instead of

fitting a higher order linear regression model, we analyze families of different age

separately using the classification of Khan et al. (2006). We studied five families,

named L1PA2 to L1PA6, and broke elements within each family into groups based

on the length of the elements. We then looked at the trend of RR within each
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group. Grouping is determined by optimal quantization of the lengths of all L1s

under consideration. Intuitively, this method separates L1s into groups by length

when there is a sudden change in the number of L1s over unit length. We selected

the number of groups to be six, roughly capturing the overall distribution of length

while assuring that the intervals are not too small for a meaningful regression. The

six length groups are shown in Table 2. The grouping reflects a natural tendency

for L1 to segregate by length.
Table 2 L1 groups by length, with length ranges, counts, and percentage.

L1 Groups Length Range L1 Count/Percentage

1 [100,490] 12226/34%
2 [491,1152] 8559/24%
3 [1153,2498] 6462/18%
4 [2499,6001] 4182/12%
5 [6002,6183] 4231/12%
6 ≥ 6184 218/1%

A one-way ANOVA (Table 3) indicates indeed the RR means are significantly

different among L1 length groups. The Tukey’s Honest Significant Differences
Table 3 One-way ANOVA for RR over the length groups.

Degrees of Sum of Mean F Pr(> F )
Freedom Squares Squares value

group 5 93 19 7.5441 4.330e-07
Residuals 35872 88107 2

(HSD) test reveals further details in Fig. 5. Under the null hypothesis of RR mean

equality across groups, if one compares every two groups using the 5% α-level, the

chance of observing some inequality among the pairs can be much greater than

the anticipated 5% type I error. The Tukey’s HSD test corrects this problem. In

Fig. 5, the range of each line segment manifests the 95% confidence interval of

the mean RR difference between the two length groups labeled on the left of the

segment. The vertical dashed line marks the zero difference location. If an interval

contains zero, there is no significant evidence from the sample to conclude that the

two groups have different mean RRs. All differences are the mean RR of a group

with a longer length minus that of one with a shorter length. A major observation

is that no segments have both ends above zero, suggesting no significant trend of
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Figure 5: Tukey’s HSD test on the RR means among length groups. Numbers
on the vertical axes correspond to length groups. For example, 5-3 stands for the
mean RR of group 5 minus that of group 3.

increasing RR as length increases. The only almost significant negative difference

between two consecutive length groups occurs from group 2 to 3, which accounts

for other significant differences among non-consecutive length groups. Therefore,

the multiple comparison analysis pins down that the most significant reduction in
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RR takes place among the L1s of intermediate length, that is between elements

shorter and longer than 1.2Kb.

Based on the Tukey’s HSD results, we studied the trend of RR within each

length group using linear regression on the length of L1. The intercepts and slopes

of each linear regression line, and the corresponding p-values are given in Table 4.

No length group shows a significant positive slope. We observe that length group 2

has a highly significant negative slope. Figure 6 shows the mean RR-length scatter
Table 4 Linear regression slopes of each group.

Estimate Std. Error t-Statistic Pr(> |t|)
1:length -5.537e-05 1.275e-04 -0.434 0.6641
2:length -2.446e-04 9.006e-05 -2.716 0.0066
3:length -3.409e-05 5.126e-05 -0.665 0.5060
4:length 3.042e-06 2.268e-05 0.134 0.8933
5:length 5.923e-05 4.409e-04 0.134 0.8931
6:length 3.108e-04 5.386e-04 0.577 0.5639

plot with the regression lines overlaid. We can observe in the plot a decreasing trend

of the regression line in group 2 quite evidently. It is also quite evident subjectively

that there is a declining tendency in the mean RR as the length increases. This

further analysis match well to previous findings by the Tukey’s HSD test. Therefore

the major RR reduction occurs on the L1s of length 491 to 1152, which are not

full-length L1s, but L1s of intermediate length.

7 Conclusion

We have described a dynamic programming algorithm to quantize a random

variable to preserve maximally the p.d.f. of the original continuous variable. Al-

though our algorithm has a quadratic running time in sample size, it guarantees the

optimality of quantization. The distance-based k-means algorithm for univariate

quantization, popular simply due to its computational convenience, shall either be

replaced by our maximum likelihood approach when preservation of the distribution

of the original continuous random variable is desired, or by a dynamic program-

ming implementation similar to ours that guarantees optimality. Applications of
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Figure 6: Scatter plot of mean RR versus L1 length. The line segments are linear
regressions within each group. Only the second segment has a significant decreasing
trend.

our algorithm in estimating RR distributions and characterizing L1 elements show

its effectiveness in capturing the underlying p.d.f.s of data. It can also be used to

discretize other genomic features including GC-content, gene expression rate, and

non-coding element densities over a genome.
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