Problem 1 Solution. G&T R-2.14

- Pre-order: Yes. For example, a pre-order traversal of the following 7 node heap will result a visit of the nodes in an ascending order: 1, 2, 3, 4, 5, 6, 7.

```
      1
     / \  
    2   5
   / \ / \ 
 3   4 6  7
```

- In-order: No. In a seven node heap shown below, an in-order traversal will result in a visit of the nodes in the order: d, b, e, a, f, c, g. By heap order property we know that d > b < e, so the list is not sorted.

```
a
 / \ 
b  c
 / \ / \ 
d  e  f  g
```

- Post-order: Yes. For example, a pre-order traversal of the following 7 node heap will result a visit of the nodes in a descending order: 7, 6, 5, 4, 3, 2, 1.

```
      1
     /  
    5  2
   / \ / \ 
 7  6 4  3
```
Problem 2 Solution. G&T R-2.18

The original heap can be:

```
1
/   \
3    33
/   /   \
5   7   35   37
/   /   /   /   /
9   11  13  15  39  41  43  45
/   /   /   /   /   /   /   /   /   /   /   /   /
17  19  21  23  25  27  29  31  47  49  51  53  55  57  59  45
```

After insertion of 32, the heap becomes:

```
1
/   \    
3    32    
/   /   /   \
5   7   35   33
/   /   /   /   /   \
9   11  13  15  39  41  43  37
/   /   /   /   /   /   /   /   /   /   /   /   /
17  19  21  23  25  27  29  31  47  49  51  53  55  57  59  45
```
Problem 3 Solution. G&T R-4.3

Algorithm 1 MergeSort(A)

INPUT: an array A of size n.
OUTPUT: a sorted array D of A in ascending order
Copy the first \(L_1 = \lceil n/2 \rceil \) elements in A to A_1
Copy the remaining \(L_2 = \lfloor n/2 \rfloor \) elements in A to A_2
D_1 ← MergeSort(A_1)
D_2 ← MergeSort(A_2)
Create an array D of size n
\(i_1 ← 0 \)
\(i_2 ← 0 \)
\(i ← 0 \)
while \(i_1 < L_1 \) and \(i_2 < L_2 \) do
 if \(D_1[i_1] < D_2[i_2] \) then
 D[i] ← D_1[i_1]
 \(i_1 ← i_1 + 1 \)
 else
 D[i] ← D_2[i_2]
 \(i_2 ← i_2 + 1 \)
 end if
 \(i ← i + 1 \)
end while
while \(i_1 < L_1 \) do
 D[i] ← D_1[i_1]
 \(i_1 ← i_1 + 1 \)
 \(i ← i + 1 \)
end while
while \(i_2 < L_2 \) do
 D[i] ← D_2[i_2]
 \(i_2 ← i_2 + 1 \)
 \(i ← i + 1 \)
end while
return D

Problem 4 Solution. G&T R-5.4

1. \(T(n) = 2T(n/2) + \log n \)
 Case 1. \(\Theta(n) \).

2. \(T(n) = 8T(n/2) + n^2 \).
 Case 1. \(\Theta(n^3) \).
3. $T(n) = 16T(n/2) + (n \log n)^4$
 Case 2. $\Theta(n^4 \log^5 n)$.

4. $T(n) = 7T(n/3) + n$
 Case 1. $\Theta(n^\log_3 7)$

5. $T(n) = 9T(n/3) + n^3 \log n$
 Case 3. $\Theta(n^3 \log n)$.

Problem 5 Solution. G&T R-5.6

\[S_1 = A(F - H) = 3(5 - 6) = -3 \]
\[S_2 = (A + B)H = (3 + 2)6 = 30 \]
\[S_3 = (C + D)E = (4 + 8)1 = 12 \]
\[S_4 = D(G - E) = 8(9 - 1) = 64 \]
\[S_5 = (A + D)(E + H) = (3 + 8)(1 + 6) = 77 \]
\[S_6 = (B - D)(G + H) = (2 - 8)(9 + 6) = -90 \]
\[S_7 = (A - C)(E + F) = (3 - 4)(1 + 5) = -6 \]
\[I = S_5 + S_6 + S_4 - S_2 = 77 + (-90) + 64 - 30 = 21 \]
\[J = S_1 + S_2 = -3 + 30 = 27 \]
\[K = S_3 + S_4 = 12 + 64 = 76 \]
\[L = S_1 - S_7 - S_3 + S_5 = -3 - (-6) - 12 + 77 = 68 \]

Problem 6 Solution.

1. (a) $T(n) = 2T(n/2) + \log n$

\[
\begin{array}{c|c}
 k & T(n) \\
 0 & 2T(n/2) + \log n \\
 1 & 2^1 T(n/2^1) = 2^2 T(n/2^2) + 2^1 \log(n/2^1) \\
 \vdots & \vdots \\
 k & 2^k T(n/2^k) = 2^{k+1} T(n/2^{k+1}) + 2^k \log(n/2^k) \\
 \vdots & \vdots \\
 k = \log_2(n) - 1, & 2^{\log_2(n)} T(1) = 2^{\log_2(n)} \\
 k = \log_2(n), & \\
 \end{array}
\]

\[T(n) = 2^{\log_2(n)} + \sum_{k=0}^{\log_2(n)-1} 2^k \log(n/2^k) \]

By plugging in the geometric sequence summation formula and the following formula

\[\sum_{k=1}^{n} ka^k = \frac{a(1-a^n)}{(1-a)^2} - \frac{na^{n+1}}{1-a}, \quad (a \neq 1) \]
we get
\[T(n) = 3n - \log n - 2 \]
\[\text{(b) } T(n) = 8T(n/2) + n^2. \]
\[
\begin{align*}
 k &= 0, & T(n) &= 8T(n/2) + n^2 \\
 k &= 1, & 8^1T(n/2^1) &= 8^2T(n/2^2) + 8^1(n/2^1)^2 \\
 &\cdots & 8^kT(n/2^k) &= 8^{k+1}T(n/2^{k+1}) + 8^k(n/2^k)^2 \\
 k &= \log_2(n) - 1, & 8^{\log_2(n)}T(1) &= 8^{\log_2(1)} \\
 k &= \log_2(n), & & \\
\end{align*}
\]
By plugging in the geometric sequence summation formula, we get
\[T(n) = 8^{\log_2(n)} + \sum_{k=0}^{\log_2(n)-1} 8^k(n/2^k)^2 \]
\[\text{(c) } T(n) = 7T(n/3) + n. \]
\[
\begin{align*}
 k &= 0, & T(n) &= 7T(n/3) + n \\
 k &= 1, & 7^1T(n/3^1) &= 7^2T(n/3^2) + 7^1n/3^1 \\
 &\cdots & 7^kT(n/3^k) &= 7^{k+1}T(n/3^{k+1}) + 7^k n/3^k \\
 k &= \log_3(n) - 1, & 7^{\log_3(n)}T(1) &= 7^{\log_3(1)} \\
 k &= \log_3(n), & & \\
\end{align*}
\]
By plugging in the geometric sequence summation formula, we get
\[T(n) = 7^{\log_3(n)} + \sum_{k=0}^{\log_3(n)-1} 7^k n/3^k \]
\[T(n) = 7^{\log_3(n)} \cdot \frac{3}{4}n \]
\[T(n) = 7^{\log_3(n)} - \frac{3}{4}n \]

2. Proof (by induction)

Need to show:
\[T(n) \text{ is } O(n^3 \log n). \]

Proof.
Since we do not know what \(c > 0 \) to take, we start from the induction step.
Assume that \(T(n') \leq cn'^3 \log n' \) for \(n' < n \).
\[T(n) = 9T(n/3) + n^3 \log n \]
\[\leq 9c[(n/3)^3 \log (n/3)] + n^3 \log n \]
\[= ((c/3) + 1)n^3 \log n - (c/3)n^3 \log 3 \]
\[\leq ((c/3) + 1)n^3 \log n \]
To satisfy $T(n) \leq cn^3 \log n$, it is sufficient that

$$((c/3) + 1)n^3 \log n \leq cn^3 \log n$$

which leads to $c \geq 3/2$.

Base case. Since $T(1) = 1 \leq c \cdot 1$ for any $c \geq 3/2$, we have no problem to use the c that is sufficient for the induction step.

Therefore, $T(n)$ is $O(n^3 \log n)$.

- **$T(n)$ is $\Omega(n^3 \log n)$**.

Proof.

We still start from the induction step. Assume that $T(n') \geq cn'^3 \log n'$ for $n' < n$.

$$T(n) = 9T(n/3) + n^3 \log n$$

$$\geq 9c[(n/3)^3 \log(n/3)] + n^3 \log n$$

$$\geq n^3 \log n \quad \text{for } n \geq 3, \text{ since the first term in the above line is non-negative when } n \geq 3$$

To satisfy $T(n) \geq cn^3 \log n$, it is sufficient that

$$n^3 \log n \geq cn^3 \log n$$

which leads to $c \leq 1$.

Base case. Induction step requires $n \geq 3$. We have

$$T(1) = 1, T(3) = 9T(3/3) + 3^3 \log 3 = 9 + 3^3 \log 3$$

Since $T(3) \geq c \cdot 3^3 \log 3$ for any $c \leq 1$, we have no problem to use the c that is sufficient for the induction step.

Therefore, $T(n)$ is $\Omega(n^3 \log n)$.

6