
0/13

�

�

�

�

�

�

	

Workshop on Dynamic Analysis, Portland, Oregon, 2003

Program Analysis: A Hierarchy

Andreas Zeller
Lehrstuhl Softwaretechnik
Universität des Saarlandes, Saarbrücken

1/13

�

�

�

�

�

�

	

A Hierarchy of Reasoning

Deduction

Observation

Induction

Experimentation

Deduction

Observation

Induction

Experimentation

2/13

�

�

�

�

�

�

	

Deductive (static) Program Analysis

Deduction

Observation

Induction

Experimentation

Deduction

Deduction: reasoning from from
the general to the particular

• does not execute any
programs (hence “static”)

• abstracts from actual runs

• can thus determine properties
that hold for all runs and all
embeddings

Traditional domain: logic, program optimization in compilers

Examples: Control and data flow analysis · symbolic
interpretation · program slicing

3/13

�

�

�

�

�

�

	

Example: Program Slicing

3 char *format = "a = %d";
4 if (p)
5 a = compute value();
6 sprintf(buf, format, a);

Assume we find "a = 0" in buf. What’s the cause?

In deductive analysis, two variables are dependent on each
other if one can affect the other’s value:

• buf is data dependent on format and a

• a is control dependent on p . . .

Dependency is undecidable: conservative approximation

4/13

�

�

�

�

�

�

	

Observational Program Analysis

Deduction

Observation

Induction

Experimentation

Observation

Observation: finding facts

• observes a single run of the
program (hence “dynamic”)

• finds irrefutable facts about
the observed run

• facts hold
for observed run only

• can make use of deduction

Traditional domain: metrics

Examples: Debuggers · coverage tools · dynamic slicing

5/13

�

�

�

�

�

�

	

Example: Dynamic Slicing

3 char *format = "a = %d";
4 if (p)
5 a = compute value();
6 sprintf(buf, format, a);

Still, we find "a = 0" in buf. What’s the cause?

Assume we also observe that p is true. Then, dynamic slicing
can deduce that a’s value stems from compute value().

6/13

�

�

�

�

�

�

	

Observing Time

The effects of variable values accumulate during execution –
the longer the time span observed, the more effects

Input

.

.

.

.

.

.

.

.

.

Program State (= Variables)

.

.

.

Final State

:+1.0

This “short-sightedness” affects static and dynamic slicing.

7/13

�

�

�

�

�

�

	

Observing Space

42991 variables
44290 references

897 variables (≤ 2%) are affected by a change

8/13

�

�

�

�

�

�

	

Inductive Program Analysis

Deduction

Observation

Induction

Experimentation

Induction

Induction: reasoning from the
particular into the abstraction

• observes multiple runs

• finds commonalities and
anomalies across runs

• findings hold for observed
runs only

• must use observation;
can use deduction

Traditional domain: natural science

Examples: Coverage comparison · relative debugging ·
dynamic invariant detection

9/13

�

�

�

�

�

�

	

Example: Invariant Detection

3 char *format = "a = %d";
4 if (p)
5 a = compute value();
6 sprintf(buf, format, a);

We execute the code under several random inputs
and flag an error each time buf contains "a = 0".

An invariant detector can then determine that, say,

a < 2054567 || a % 2 == 1

holds at line 6 for all runs where the error occurs.

Obviously, something very strange is going on.

10/13

�

�

�

�

�

�

	

Experimental Program Analysis

Deduction

Observation

Induction

ExperimentationExperimentation Experimentation: conducting
experiments based on prior
findings

• executes and controls
multiple runs

• narrows down causes

• must use observation; can use
deduction and induction

Traditional domain: experimental science

Examples: Delta debugging · Experiments by humans

11/13

�

�

�

�

�

�

	

Example: Experiments

3 char *format = "a = %d";
4 if (p)
5 a = compute value();
6 sprintf(buf, format, a);

The failure occurs for most values of a:
a cannot be the cause for buf being "a = 0".

The only remaining cause is format, and indeed:

1 double a;

Altering format to "a = %f" fixes the failure
(and proves that format was the failure cause)

Delta debugging can isolate such causes automatically by
narrowing the difference between a failing and non-failing run.

12/13

�

�

�

�

�

�

	

Conclusion and Consequences

Deduction

Observation

Induction

Experimentation

Deduction

Observation

Induction

Experimentation Each class of program analysis

• is defined by the # of runs
considered (from 0 to ∞)

• can use “inner” classes (but
not vice versa)

• is limited in its findings
by the underlying reasoning
technique:

• To determine causes, one needs experiments.

• To summarize findings, one must induce over n runs.

• To find facts, one needs observation.

• Deduction (surprise?) cannot tell any of these!

13/13

�

�

�

�

�

�

	

Topics to Talk About

Deduction

Observation

Induction

Experimentation

Deduction

Observation

Induction

Experimentation

• How can we better leverage
the findings of “inner” classes
for “outer” classes?

• What other induction methods
(data mining, machine
learning, . . .) could be used?

• How can we leverage
experimentation (e.g.
generate runs that satisfy
given properties)?

• What are the practical limits of the individual classes?

• What are the typical uses of dynamic analysis?

• Does this hierarchy make sense?

	A Hierarchy of Reasoning
	Deductive (static) Program Analysis
	Example: Program Slicing
	Observational Program Analysis
	Example: Dynamic Slicing
	Observing Time
	Observing Space
	Inductive Program Analysis
	Example: Invariant Detection
	Experimental Program Analysis
	Example: Experiments
	Conclusion and Consequences
	Topics to Talk About

