+

Exploiting Synergy Between
Testing and Inferred Partial
Specifications

Tao Xie David Notkin

Department of Computer Science & Engineering
University of Washington
May 9, 2003
Workshop on Dynamic Analysis (WODA 2003)

‘_H Outline

= Background

= Synergy issues

= Application

= Why it will fail

= Why it will succeed

Background

Specification-based testing
| I

(likely)
Specs

4

> |

Tests

<

Dynamic likely spec inference

= [est case generation, e.g. Korat [BKM 02], Jtest [ParaSoft] , AsmL [MSR]

= [est oracle generation, e.g. Korat, Jtest, JML+JUnit [cL 01]

m|est SeleCtiOn/COVGFage Criteria, e.g. ADLscope [CR 99, UMLTest [0A 99]

sLikely spec Inference based on test executions,

e.g. Daikon operational abstraction [EccN 01], Strauss [ABL 02], Hastings (wwmL 02]

&

| Synergy Issue: Chicken-and-Egg I

Spec-based test generation

Tests

Dynamic likely spec inference

= Win-win feedback loop: better spec <> better tests?
= Chicken and egg problem?

+

m Likely specs S inferred from T

m Tests T’ generated based on S

(likely)
Specs

y

Spec-based test generation

Synergy Issue: Chicken-and-Egg II &

=

Tests

‘.

Dynamic likely spec inference

= |nitial tests T (manually written tests, automatically generated tests
w/0 specs, etc.)

Executions of T’ 2 select a subset of T’
[Test augmentation: T =T U the subset of T'] Better tests

Likely specs S inferred from T

ﬁ

Better specs

Executions of Tests Generated From Likely
Specifications -1

Stronger inferred pre

Input domain Stronger inferred post Output domain

Inferred precondition
constrained domain

Inferred postcondition
constrained domain

Postcondition violation
(exercise a new feature)

o[

Postcondition violation
(expose a fault)

Executions of Tests Generated From Likely
Specifications -II

———
——

Weaker inferred pre

Input domain Stronger inferred post Output domain

Inferred precondition
constrained domain

Inferred postcondition
constrained domain

Postcondition violation
(exercise a new feature)

Postcondition violation * Postcondition violation
(narrow down precondition) (expose a fault)

]

Executions of Tests Generated From Likely

| Specifications -III

Stronger inferred pre

Input domain Weaker inferred post Output domain

Inferred precondition Inferred postcondition
constrained domain constrained domain

* Postcondition violation
(expose a fault)

Executions of Tests Generated From Likely
Specifications -IV

Weaker inferred pre

Input domain Weaker inferred post Output domain
Inferred precondition Inferred postcondition
constrained domain constrained domain

* Postcondition violation * Postcondition violation

(narrow down precondition) (expose a fault)

Handling Synergy Issues

= Precondition guard removal

= Too restrictive preconditions may leave (maybe important) legal
unit inputs untested

= lterations until reaching a fixed point

= Add new violating tests (legal inputs) to the existing test suite for
spec inference in next cycle

= Add stronger preconditions manually

Application: Spec-Violation Approach to
Unit Test Data Selection

Automaticallf|| Call length 3

. ? eesr’: EsrljI iJ[E ° +ll length 2
IMan ually ____S__Eiﬂ_it_“_ — T Run & Ftest
{Egtin;,_?:tmd C':'”;Lr'te”t ‘inlated Check

specs
Annotated
@ prngram
Daikan

' Inwariants

Data trace Detect Insert as

Run invariants DhC comments

.l((i

= Problem
= Insufficiency of the manually maintained unit test suite A (small number)

= Oracle unavailability of the automatically generated unit test suite B
(large number)

= Goal: Selectively augment A with a small (most valuable) subset of B
= Related work: Operational Difference [HME 03], DIDUCE [HL 02]

i Why it will fail

= Not enough inferred postconditions to violate
= Improved inference techniques can help

= Precondition guard removal might induce false
positives
= Precondition guard relaxation can help

= Postcondition violations are due to limited test
data value range uninteresting to testers

= Manually commenting out violated specs is
tedious

= Improved Jtest to support it can help

i Why it will succeed

= Without a priori specification, there are few
effective black box unit test data selection
approaches.

= Violating tests can guarantee to exercise a new
program feature

= [he violated specs for the corresponding
violating tests can help developers to make
selection decision easily.

= The approach can be largely automated

	Exploiting Synergy Between Testing and Inferred Partial Specifications
	Outline
	Background
	Synergy Issue: Chicken-and-Egg I
	Synergy Issue: Chicken-and-Egg II
	Executions of Tests Generated From Likely Specifications -I
	Executions of Tests Generated From Likely Specifications -II
	Executions of Tests Generated From Likely Specifications -III
	Executions of Tests Generated From Likely Specifications -IV
	Handling Synergy Issues
	Application: Spec-Violation Approach to Unit Test Data Selection
	Why it will fail
	Why it will succeed

