
Exploiting Synergy Between
Testing and Inferred Partial
Specifications

Tao Xie David Notkin

Department of Computer Science & Engineering
University of Washington

May 9, 2003
Workshop on Dynamic Analysis (WODA 2003)

Outline

� Background
� Synergy issues
� Application
� Why it will fail
� Why it will succeed

Background

Tests
Specs

Specification-based testing

Dynamic likely spec inference

(likely)

�Test case generation, e.g. Korat [BKM 02], Jtest [ParaSoft] , AsmL [MSR]

�Test oracle generation, e.g. Korat, Jtest, JML+JUnit [CL 01]

�Test selection/coverage criteria, e.g. ADLscope [CR 99], UMLTest [OA 99]

�Likely spec Inference based on test executions,
e.g. Daikon operational abstraction [ECGN 01], Strauss [ABL 02], Hastings [WML 02]

Synergy Issue: Chicken-and-Egg I

Dynamic likely spec inference

Spec-based test generation

(likely)
Specs

Tests

� Win-win feedback loop: better spec ÅÆ better tests?
� Chicken and egg problem?

Synergy Issue: Chicken-and-Egg II

Dynamic likely spec inference

Spec-based test generation

(likely)
Specs

Tests

� Initial tests T (manually written tests, automatically generated tests
w/o specs, etc.)

� Likely specs S inferred from T

� Tests T’ generated based on S
� Executions of T’ Æ select a subset of T’

[Test augmentation: T = T ∪ the subset of T’] Better testsBetter tests
� Likely specs S inferred from T Better specsBetter specs

Executions of Tests Generated From Likely
Specifications -I

Legal
inputs

Input domain

Legal
outputs

Output domain

Postcondition violation
(expose a fault)

☺

☺

Postcondition violation
(exercise a new feature)

☺

☺

Inferred precondition
constrained domain

Stronger inferred pre

Inferred postcondition
constrained domain

Stronger inferred post

Universal UniversalMethod
Execution

Executions of Tests Generated From Likely
Specifications -II

Legal
inputs

Input domain

Method
Execution

Legal
outputs

Postcondition violation
(exercise a new feature)

Postcondition violation
(expose a fault)

☺

☺

☺
☺

☺ Postcondition violation
(narrow down precondition)

☺
☺

Inferred precondition
constrained domain

Weaker inferred pre

Output domain
Inferred postcondition
constrained domain

Stronger inferred post

Executions of Tests Generated From Likely
Specifications -III

Legal
inputs

Input domain

Legal
outputs

Output domain

☺

Inferred precondition
constrained domain

Stronger inferred pre

Inferred postcondition
constrained domain

Weaker inferred post

Method
Execution

Postcondition violation
(expose a fault)

☺

Executions of Tests Generated From Likely
Specifications -IV

Legal
inputs

Input domain

Method
Execution

Legal
outputs

Output domain

☺

Inferred postcondition
constrained domain

Weaker inferred post

Inferred precondition
constrained domain

Weaker inferred pre

☺

Postcondition violation
(expose a fault)

☺☺ Postcondition violation
(narrow down precondition)

Handling Synergy Issues

� Precondition guard removal
� Too restrictive preconditions may leave (maybe important) legal

unit inputs untested

� Iterations until reaching a fixed point
� Add new violating tests (legal inputs) to the existing test suite for

spec inference in next cycle
� Add stronger preconditions manually

Application: Spec-Violation Approach to
Unit Test Data Selection

� Problem
� Insufficiency of the manually maintained unit test suite A (small number)
� Oracle unavailability of the automatically generated unit test suite B

(large number)
� Goal: Selectively augment A with a small (most valuable) subset of B
� Related work: Operational Difference [HME 03], DIDUCE [HL 02]

Why it will fail

� Not enough inferred postconditions to violate
� Improved inference techniques can help

� Precondition guard removal might induce false
positives
� Precondition guard relaxation can help

� Postcondition violations are due to limited test
data value range uninteresting to testers

� Manually commenting out violated specs is
tedious
� Improved Jtest to support it can help

Why it will succeed

� Without a priori specification, there are few
effective black box unit test data selection
approaches.

� Violating tests can guarantee to exercise a new
program feature

� The violated specs for the corresponding
violating tests can help developers to make
selection decision easily.

� The approach can be largely automated

	Exploiting Synergy Between Testing and Inferred Partial Specifications
	Outline
	Background
	Synergy Issue: Chicken-and-Egg I
	Synergy Issue: Chicken-and-Egg II
	Executions of Tests Generated From Likely Specifications -I
	Executions of Tests Generated From Likely Specifications -II
	Executions of Tests Generated From Likely Specifications -III
	Executions of Tests Generated From Likely Specifications -IV
	Handling Synergy Issues
	Application: Spec-Violation Approach to Unit Test Data Selection
	Why it will fail
	Why it will succeed

