
Exploiting Synergy Between
Testing and Inferred Partial
Specifications

Tao Xie David Notkin

Department of Computer Science & Engineering
University of Washington

May 9, 2003
Workshop on Dynamic Analysis (WODA 2003)

Outline

Background
Synergy issues
Application
Why it will fail
Why it will succeed

Background

Tests
Specs

Specification-based testing

Dynamic likely spec inference

(likely)

Test case generation, e.g. Korat [BKM 02], Jtest [ParaSoft] , AsmL [MSR]

Test oracle generation, e.g. Korat, Jtest, JML+JUnit [CL 01]

Test selection/coverage criteria, e.g. ADLscope [CR 99], UMLTest [OA 99]

Likely spec Inference based on test executions,
e.g. Daikon operational abstraction [ECGN 01], Strauss [ABL 02], Hastings [WML 02]

Synergy Issue: Chicken-and-Egg I

Dynamic likely spec inference

Spec-based test generation

(likely)
Specs

Tests

Win-win feedback loop: better spec better tests?
Chicken and egg problem?

Synergy Issue: Chicken-and-Egg II

Dynamic likely spec inference

Spec-based test generation

(likely)
Specs

Tests

Initial tests T (manually written tests, automatically generated tests
w/o specs, etc.)

Likely specs S inferred from T

Tests T’ generated based on S
Executions of T’ select a subset of T’
[Test augmentation: T = T ∪ the subset of T’] Better testsBetter tests
Likely specs S inferred from T Better specsBetter specs

Executions of Tests Generated From Likely
Specifications -I

Legal
inputs

Input domain

Legal
outputs

Output domain

Postcondition violation
(expose a fault)

☺

☺

Postcondition violation
(exercise a new feature)

☺

☺

Inferred precondition
constrained domain

Stronger inferred pre

Inferred postcondition
constrained domain

Stronger inferred post

Universal UniversalMethod
Execution

Executions of Tests Generated From Likely
Specifications -II

Legal
inputs

Input domain

Method
Execution

Legal
outputs

Postcondition violation
(exercise a new feature)

Postcondition violation
(expose a fault)

☺

☺

☺
☺

☺ Postcondition violation
(narrow down precondition)

☺
☺

Inferred precondition
constrained domain

Weaker inferred pre

Output domain
Inferred postcondition
constrained domain

Stronger inferred post

Executions of Tests Generated From Likely
Specifications -III

Legal
inputs

Input domain

Legal
outputs

Output domain

☺

Inferred precondition
constrained domain

Stronger inferred pre

Inferred postcondition
constrained domain

Weaker inferred post

Method
Execution

Postcondition violation
(expose a fault)

☺

Executions of Tests Generated From Likely
Specifications -IV

Legal
inputs

Input domain

Method
Execution

Legal
outputs

Output domain

☺

Inferred postcondition
constrained domain

Weaker inferred post

Inferred precondition
constrained domain

Weaker inferred pre

☺

Postcondition violation
(expose a fault)

☺☺ Postcondition violation
(narrow down precondition)

Handling Synergy Issues

Precondition guard removal
Too restrictive preconditions may leave (maybe important) legal
unit inputs untested

Iterations until reaching a fixed point
Add new violating tests (legal inputs) to the existing test suite for
spec inference in next cycle
Add stronger preconditions manually

Application: Spec-Violation Approach to
Unit Test Data Selection

Problem
Insufficiency of the manually maintained unit test suite A (small number)
Oracle unavailability of the automatically generated unit test suite B
(large number)

Goal: Selectively augment A with a small (most valuable) subset of B
Related work: Operational Difference [HME 03], DIDUCE [HL 02]

Why it will fail

Not enough inferred postconditions to violate
Improved inference techniques can help

Precondition guard removal might induce false
positives

Precondition guard relaxation can help
Postcondition violations are due to limited test
data value range uninteresting to testers
Manually commenting out violated specs is
tedious

Improved Jtest to support it can help

Why it will succeed

Without a priori specification, there are few
effective black box unit test data selection
approaches.
Violating tests can guarantee to exercise a new
program feature
The violated specs for the corresponding
violating tests can help developers to make
selection decision easily.
The approach can be largely automated

	Exploiting Synergy Between Testing and Inferred Partial Specifications
	Outline
	Background
	Synergy Issue: Chicken-and-Egg I
	Synergy Issue: Chicken-and-Egg II
	Executions of Tests Generated From Likely Specifications -I
	Executions of Tests Generated From Likely Specifications -II
	Executions of Tests Generated From Likely Specifications -III
	Executions of Tests Generated From Likely Specifications -IV
	Handling Synergy Issues
	Application: Spec-Violation Approach to Unit Test Data Selection
	Why it will fail
	Why it will succeed

