
Dynamic Analysis from the 
Bottom Up

Markus Mock 
University of Pittsburgh



Dynamic Analysis

Dynamic
Continuous & productive [Encyclopedia 
Britannica]

Analysis
Separation of a whole into its parts



Making DA Productive

Observation of program properties at 
run time
Observation must be efficient to be 
productive

Need efficient profiling techniques



Profiling

Instrumentation
Precise and detailed information
Significant program slowdown

Sampling
Approximate information
Smaller impact on performance



Overhead Reduction
Transition from quantity to quality
Minimally-invasive observation enables

observation of new properties
Finer-grained observation
Pervasive deployment of Dynamic Analysis



Example: Debugging
Data watchpoints 

Expensive in software
Based on traps for every (memory access) instruction
Slowdown ~100X

Simple hardware support makes them feasible for 
whole programs

watchpoint registers
Special & simple processor hardware monitors memory 
operations and traps to software only when accesses 
occur
Available, e.g., on Pentium 



Vision: Bottom-Up Dynamic 
Analysis

Design DA infrastructure from the hardware-level to 
the application-level
Exploit hardware features for fast data collection
Design compositional primitives that support multiple 
dynamic analyses
Explore what hardware features are required



Analysis Counters
Modern hardware has performance counters

Simple form for monitoring system behavior, examples:
Typically oriented towards / used for performance profiling / 
improvement
Examples

Cache hits & misses
IPC

Analysis counters
Monitor software properties
Oriented towards analysis, i.e., understanding of program 
parts and whole
Examples

Call graph counter ⇒ dynamic call graph
Alias counter ⇒ dynamic points-to analysis



Call Graph Counters
Processor records for every call instruction

Current procedure address (CA)
Target address (CE)
Call instruction address (CS)
In a fixed size rotating hardware history list for <CA,CE, CS> 
tuples
Periodic transfer of the hardware structure contents to 
program memory (monitoring process or application code), a 
la DCPI



Why this will fail
Hardware development is performance-driven

Little interest in software engineer’s concerns

Useful dynamic properties are complex
Too expensive to realize in silicon
Too narrowly applicable (just one client per 
feature)

Hardware-realization too inflexible
Many different rapidly involving dynamic analyses 
that all require different support mechanisms



Why this will work
Hardware development is performance-driven

Some dynamic analyses help improve performance
Enough transistors available for off critical path 
structures (counters, watch registers etc)

Useful dynamic properties are complex - but 
Can be synthesized from simple primitives 
Primitives can be shared across multiple analyses

Primitives can be combined in different ways ⇒
flexibility


	Dynamic Analysis from the Bottom Up
	Dynamic Analysis
	Making DA Productive
	Profiling
	Overhead Reduction
	Example: Debugging
	Vision: Bottom-Up Dynamic Analysis
	Analysis Counters
	Call Graph Counters
	Why this will fail
	Why this will work

