Dynamic Analysis from the

!'_ Bottom Up

Markus Mock
University of Pittsburgh




‘_H Dynamic Analysis

= Dynamic

= Continuous & productive [Encyclopedia
Britannica]

= Analysis
= Separation of a whole into its parts




‘_H Making DA Productive

= Observation of program properties at
run time

s Observation must be efficient to be
productive

= Need efficient profiling techniques



i Profiling

= Instrumentation
= Precise and detailed information
= Significant program slowdown
= Sampling
=« Approximate information
=« Smaller impact on performance




i Overhead Reduction

= Transition from quantity to quality

= Minimally-invasive observation enables
= Observation of new properties
» Finer-grained observation
= Pervasive deployment of Dynamic Analysis




Example: Debugging

= Data watchpoints

= EXpensive in software

= Based on traps for every (memory access) instruction
= Slowdown ~100X

=« Simple hardware support makes them feasible for
whole programs
= watchpoint registers

= Special & simple processor hardware monitors memory
operations and traps to software only when accesses
occur

= Available, e.g., on Pentium



Vision: Bottom-Up Dynamic

‘_H Analysis

Design DA infrastructure from the hardware-level to
the application-level

Exploit hardware features for fast data collection

Design compositional primitives that support multiple
dynamic analyses

Explore what hardware features are required



i Analysis Counters

= Modern hardware has performance counters
=« Simple form for monitoring system behavior, examples:

= Typically oriented towards / used for performance profiling /
improvement

= Examples
= Cache hits & misses

= IPC
= Analysis counters
= Monitor software properties

« Oriented towards analysis, i.e., understanding of program
parts and whole

= Examples

= Call graph counter = dynamic call graph
= Alias counter = dynamic points-to analysis



Call Graph Counters

= Processor records for every call instruction
= Current procedure address (CA)
= Target address (CE)
« Call instruction address (CS)

= In a fixed size rotating hardware history list for <CA,CE, CS>
tuples

= Periodic transfer of the hardware structure contents to

program memory (monitoring process or application code), a
la DCPI



i Why this will fail

= Hardware development is performance-driven
= Little interest in software engineer’s concerns

= Useful dynamic properties are complex
= TOO0 expensive to realize in silicon

= Too narrowly applicable (just one client per
feature)

s Hardware-realization too inflexible

« Many different rapidly involving dynamic analyses
that all require different support mechanisms



i Why this will work

= Hardware development is performance-driven
= Some dynamic analyses help improve performance
= Enough transistors available for off critical path
structures (counters, watch registers etc)
= Useful dynamic properties are complex - but
=« Can be synthesized from simple primitives
= Primitives can be shared across multiple analyses

= Primitives can be combined in different ways =
flexibility




	Dynamic Analysis from the Bottom Up
	Dynamic Analysis
	Making DA Productive
	Profiling
	Overhead Reduction
	Example: Debugging
	Vision: Bottom-Up Dynamic Analysis
	Analysis Counters
	Call Graph Counters
	Why this will fail
	Why this will work

