Detecting Patterns in Traces of Procedure Calls

Abdelwahab Hamou-Lhadj & Timothy Lethbridge

{ahamou, tcl}@site.uottawa.ca

University of Ottawa - Canada

Workshop on Dynamic Analysis (WODA) May 2003
Co-located with ICSE 2003
Portland, Oregon
Objective

- Execution traces are important to understand the behavior and sometimes the structure of a software system.

- Execution patterns can bridge the gap between low level system components and high level domain concepts.
 - And hence help program comprehension.

- We need:
 - an efficient way for detecting these patterns.
 - to understand when two patterns can be considered as equivalent.

- We focus on patterns of procedure calls.
Why Traces of Procedure Calls?

- The abstraction level of traces of procedure calls seems well suited for program comprehension.
 - Applies to methods in OO as well

- Alternatives:
 - Inter-process messaging
 - Not a tree structure
 - Statement level
 - Vastly more detail
Definition of a Trace Pattern

• “A sequence of calls that occurs repetitively but non-contiguously in several places in the trace”
 Zayour and Lethbridge

• We add: instances of a given pattern do not need to be identical

• Ideally, a trace pattern corresponds to an abstract domain concept.
 E.g. a user identifiable aspect of some feature
 But reality is far from the ideal
Trace Structure

- A trace of procedure calls from a single thread is represented by a rooted labeled ordered tree.
- A trace pattern is represented as a non-contiguous repeated subtree.

Tree representation of the trace:
$$M(A(B, C), E(C, D, A(B, C)))$$
Trace Preprocessing

- Sequences of calls due to loops and recursion encumber the trace
- They need to be removed
- The tree structure is maintained by adding virtual calls

Trace with repetitions due to loops

After removing repetitions
Pattern Extraction

- Based on Valiente’s algorithm for the common subexpression problem

- (The problem was introduced by J.P. Downey, R. Sethi and R.E. Tarjan)

- Any rooted tree can be transformed into its most compact form by representing common subtrees only once
Valiente’s Algorithm

- Traverse the tree in a bottom-up fashion
- Assign a positive integer between 1 and \(n \)
 \(n \) represents the size of the tree
- Two nodes \(n1 \) and \(n2 \) are assigned the same certificate if the trees rooted at them are similar according to predefined matching criteria
- To compute the certificate, each node is assigned a signature
- The signature of a node \(n \) consists of its label and the certificates of its direct children, if there are any.
 \(\text{This makes it unique} \)
- A global hash table is used to store the certificates and signatures and ensure that similar subtrees will always hash to the same element.
- Our contribution: Examine the matching criteria
Example

- If we consider exact match only, identical subtrees have the same certificates

- Global table that corresponds to this tree.

- We mainly traverse the table and extract the subtrees (excluding the leaves) that have more than 1 incoming edge.

- E.g. ‘A 1 2’ is a pattern

<table>
<thead>
<tr>
<th>Certificate</th>
<th>Frequency</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>C</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>D</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>A 1 2</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>E 4 2 3</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>M 4 5</td>
</tr>
</tbody>
</table>
Equivalent Patterns

- Pattern matching criteria determine when two sequences of calls can be considered equivalent
 - Will effect usefulness and performance

- Users can select the criteria according to their knowledge of the system
 - E.g. identical patterns might be useful to novices but less useful to experts.

- De Pauw, Lorenz, Vliissides and Wegman suggested a list of matching criteria that are used for OO systems.
 - Some of them are also useful for procedural systems.
De Pauw et al. Pattern Matching Criteria Useful For Procedural Systems

- **Identity**: Two sequences of calls are similar if they have the same topology:
 - Same call structure
 - Same order of calls
 - Etc.

- **Ignoring Repetition**: Repetition due to loops and recursions can be ignored when looking for patterns.

- **Ignoring Ordering**: Order of calls might not be important at some levels of the call tree.

- **Depth limited**: Allows comparing two subtrees up to a certain depth.

 - Deeper calls ignored

<table>
<thead>
<tr>
<th>Diagram 1</th>
<th>Diagram 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- These two sequences are similar if repetitions are ignored.

- Two sequences are similar if the order is ignored.
New Matching Criteria

- **Removing Utilities**: Requires automatic detection of utility routines

- **Distance Limited**: Trees within a certain edit distance are considered the same.

- **Flattening**: Ignore structure of tree
 - consider only routines encountered
 - might be useful for experts who are not interested in the call structure

- These patterns are considered equivalent if utility routines (u_i) are ignored

- The edit distance can reveal that these two sequences can be considered as the same pattern
Conclusions and Future Work

• We need to validate the matching criteria and analyze at which level of the tree they can be applied usefully.

• We also need to study how they can be combined.

• It is also important to understand the relationship between the use of the matching criteria and the user’s knowledge of the system.

• Goal: automatic detection of patterns that most likely correspond to high level concepts.
Why this work will fail!

- We might have trouble finding ways for the criteria to work together
- There might be no intuitive meaning attributable to edit distance in the general context
- We might not find a universally appropriate definition of a ‘utility’
Why this work will succeed!

- We have already done some experiments in compressing traces
- High interest from SEs in browsing smaller traces
- We have been told by SEs that our proposed matching criteria correspond to what people want