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Goals and outline

• Theme:  static and dynamic analyses are less 
different than many people believe

• Goal:  encourage blending of the two 
techniques and communities

• Outline
• Review of static and dynamic analysis
• Combining them:  aggregation, analogies, hybrids
• Observation:  both examine a subset of executions
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Static analysis

• Examine program text (only), reason over possible 
behaviors by building a model of program state

• Example:  compiler optimizations

• Slow:  models of state are large, so use abstraction
• Conservative:  account for abstracted-away state
• Sound:  (weak) properties are guaranteed to be true
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Dynamic analysis

• Execute program, observe executions
• Examples:  testing, profiling

• Fast:  as quick as execution (over a test suite)
• Example:  aliasing

• Precise:  no abstraction or approximation
• Unsound:  results may not generalize to future 

executions
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Research agendas

• Static analysis:  choose good abstractions
• Less useful for applications that require 

precision
• Dynamic analysis:  choose good tests

• Less useful for applications that require 
correctness

• Many domains do not require correctness!
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Combining static and 
dynamic analysis

1. Aggregation:  pre- or post-processing
• Profile-directed compilation
• Reduce instrumentation requirements

2. Inspiring analogous analyses
3. Hybrid analyses that blend both approaches
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Analogous analyses

• Static and dynamic slicing
• Memory checking

• Purify [Hastings 92]:  run-time tagged memory; 
each instruction checks/updates the tags

• LCLint [Evans 96]:  compile-time dataflow 
analysis; each transfer function checks/updates 
the state

• Essentially identical analyses!
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More analogous analyses

• Specification checking
• Statically:  theorem-proving
• Dynamically:  assert statement

• Specification generation
• Statically:  by hand or abstract interpretation [Cousot 77]

• Dynamically:  by invariant detection [Ernst 99], reporting 
unfalsified properties

• Lesson:  look for more gaps with no analogous 
analyses!
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Hybrid analyses
Combine static and dynamic analyses

• Not mere aggregation, but a new analysis
• Disciplined trade-off between precision and soundness

Possible starting points
• Analyses that trade off run-time and precision
• Ignore some available information

• Example:  examine only some paths
• Merge based on observation that both examine only a 

subset of executions (next section of talk)
• Problem:  optimistic vs. pessimistic treatment

Examples:  bounded model checking, security 
analyses, delta debugging, etc.
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Sound dynamic analysis

• Observe every possible execution!
• Problem:  infinite number of executions
• Solution:  test case selection and generation

• Efficiency tweaks to an algorithm that works 
perfectly in theory but exhausts resources in 
practice
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Precise static analysis

• Reason over full program state!
• Problem:  infinite number of executions
• Solution:  data or execution abstraction

• Efficiency tweaks to an algorithm that works 
perfectly in theory [Cousot 77] but exhausts 
resources in practice
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Subsets of executions

• Dynamic analysis:  executions in the test suite
• Easy to enumerate, characterizes program use

• Static analysis:  executions that induce particular 
data structures or control flow
• Characterizes what program parts are exercised
• Example:  k-limiting [Jones 81]

• Each subset/characterization is better for certain uses
• Characterize with respect to code or input/execution

• Combine them to notice analogies and to produce 
new analyses
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Why this won’t work
• Analogies between analyses

• What applications tolerate imprecision?
• No more low-hanging fruit
• Approaches too different

• Hybrid analyses
• How to measure/trade-off precision and soundness
• Optimistic vs. pessimistic treatment of unseen 

executions
• Subset characterization

• How to characterize program executions
• What is “partial soundness”?  What is in between?
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Why this might work

• Analogous analyses
• Success in various domains

• Hybrid analyses
• Existing analyses increasingly look like points 

in this continuum
• Subset characterization
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