
Michael Ernst, page 1

Static and dynamic analysis:
synergy and duality

Michael Ernst
MIT Lab for Computer Science
http://pag.lcs.mit.edu/~mernst/

Michael Ernst, page 2

Goals and outline

• Theme: static and dynamic analyses are less
different than many people believe

• Goal: encourage blending of the two
techniques and communities

• Outline
• Review of static and dynamic analysis
• Combining them: aggregation, analogies, hybrids
• Observation: both examine a subset of executions

Michael Ernst, page 3

Static analysis

• Examine program text (only), reason over possible
behaviors by building a model of program state

• Example: compiler optimizations

• Slow: models of state are large, so use abstraction
• Conservative: account for abstracted-away state
• Sound: (weak) properties are guaranteed to be true

Michael Ernst, page 4

Dynamic analysis

• Execute program, observe executions
• Examples: testing, profiling

• Fast: as quick as execution (over a test suite)
• Example: aliasing

• Precise: no abstraction or approximation
• Unsound: results may not generalize to future

executions

Michael Ernst, page 5

Static
analysis

Dynamic
analysis

Fast
simple execution

Precise
no approximation

Unsound
does not generalize

Slow
use abstraction

Conservative
due to abstraction

Sound
due to conservatism

Michael Ernst, page 6

Research agendas

• Static analysis: choose good abstractions
• Less useful for applications that require

precision
• Dynamic analysis: choose good tests

• Less useful for applications that require
correctness

• Many domains do not require correctness!

Michael Ernst, page 7

Combining static and
dynamic analysis

1. Aggregation: pre- or post-processing
• Profile-directed compilation
• Reduce instrumentation requirements

2. Inspiring analogous analyses
3. Hybrid analyses that blend both approaches

Michael Ernst, page 8

Analogous analyses

• Static and dynamic slicing
• Memory checking

• Purify [Hastings 92]: run-time tagged memory;
each instruction checks/updates the tags

• LCLint [Evans 96]: compile-time dataflow
analysis; each transfer function checks/updates
the state

• Essentially identical analyses!

Michael Ernst, page 9

More analogous analyses

• Specification checking
• Statically: theorem-proving
• Dynamically: assert statement

• Specification generation
• Statically: by hand or abstract interpretation [Cousot 77]

• Dynamically: by invariant detection [Ernst 99], reporting
unfalsified properties

• Lesson: look for more gaps with no analogous
analyses!

Michael Ernst, page 10

Hybrid analyses
Combine static and dynamic analyses

• Not mere aggregation, but a new analysis
• Disciplined trade-off between precision and soundness

Possible starting points
• Analyses that trade off run-time and precision
• Ignore some available information

• Example: examine only some paths
• Merge based on observation that both examine only a

subset of executions (next section of talk)
• Problem: optimistic vs. pessimistic treatment

Examples: bounded model checking, security
analyses, delta debugging, etc.

Michael Ernst, page 11

Sound dynamic analysis

• Observe every possible execution!
• Problem: infinite number of executions
• Solution: test case selection and generation

• Efficiency tweaks to an algorithm that works
perfectly in theory but exhausts resources in
practice

Michael Ernst, page 12

Precise static analysis

• Reason over full program state!
• Problem: infinite number of executions
• Solution: data or execution abstraction

• Efficiency tweaks to an algorithm that works
perfectly in theory [Cousot 77] but exhausts
resources in practice

Michael Ernst, page 13

Subsets of executions

• Dynamic analysis: executions in the test suite
• Easy to enumerate, characterizes program use

• Static analysis: executions that induce particular
data structures or control flow
• Characterizes what program parts are exercised
• Example: k-limiting [Jones 81]

• Each subset/characterization is better for certain uses
• Characterize with respect to code or input/execution

• Combine them to notice analogies and to produce
new analyses

Michael Ernst, page 14

Why this won’t work
• Analogies between analyses

• What applications tolerate imprecision?
• No more low-hanging fruit
• Approaches too different

• Hybrid analyses
• How to measure/trade-off precision and soundness
• Optimistic vs. pessimistic treatment of unseen

executions
• Subset characterization

• How to characterize program executions
• What is “partial soundness”? What is in between?

Michael Ernst, page 15

Why this might work

• Analogous analyses
• Success in various domains

• Hybrid analyses
• Existing analyses increasingly look like points

in this continuum
• Subset characterization

	Static and dynamic analysis:synergy and duality
	Goals and outline
	Static analysis
	Dynamic analysis
	Static analysis
	Research agendas
	Combining static and dynamic analysis
	Analogous analyses
	More analogous analyses
	Hybrid analyses
	Sound dynamic analysis
	Precise static analysis
	Subsets of executions
	Why this won’t work
	Why this might work

