
Scripting Runtime
Dynamic Analysis

Jonathan Cook
WODA 2003

The Point

• What about ad-hoc and one-shot
analyses?

• Need to lower the development cost
– instrumentation cost
– development effort

• Scripting languages offer an ideal
platform for providing these things

Warning!!!

• I LOVE scripting languages

• SL put the fun back into programming

• Able to see exciting results quickly

Scripting Languages

• Originally meant “shell scripts”
• Has evolved into programming that is

– easy to use
– less formal?
– provides lots of built in functionality

• Perl, Tcl, Python, VB, PHP, …

RT Dynamic Analysis Needs:

system under observation
instrumentation

frameworks
(tricky stuff!)

“old-fashioned”
programming

runtime dynamic analysis

Instrumentation

• Always going to be “hard”?

• If done well, reusable

• An ideal arena for systems
programming languages

Programming

• Many different needs
– high execution speed
– high robustness
– low development effort
– high ease of use
– low entry barrier

• Scripting languages can often provide
the last three

Scripting Has:

• Extensibility
– can define new commands in the language

through conventional programming
• GUI building

– easy, flexible, and dynamic GUI
capabilities

• Event handling
– both system and user-defined events

DA Example in Tcl

proc mymalloc_begin {size} {
global NumMallocs BytesMalloced AvgBlockSize CurrentAlloc
incr NumMallocs
incr BytesMalloced $size
incr CurrentAlloc $size
Setline $size red
set AvgBlockSize [expr $BytesMalloced/$NumMallocs]

}

proc mymalloc_end {ptr size} {
global MBlocks
set MBlocks($ptr) $size

}

Tcl Continued

proc myfree_begin {ptr} {
global NumFrees BytesFreed MBlocks CurrentAlloc
incr NumFrees
if {![info exists MBlocks($ptr)]} {

puts stderr "Free error: block at [format "%x" $ptr] does not exist!“
return }

if {$MBlocks($ptr) < 0} {
puts stderr "Free error: block at [format "%x" $ptr] already freed!“
return }

incr BytesFreed $MBlocks($ptr)
incr CurrentAlloc [expr -1 * $MBlocks($ptr)]
Setline $MBlocks($ptr) green
set MBlocks($ptr) [expr -1 * $MBlocks($ptr)]

}

Instrumentation Level

• Interface from excutable to Tcl is done
in C
– dynamic linker mods
– wrapper generation from prototypes
– future enhancements (data access,…)

void *malloc(size_t numbytes) -> mymalloc;
void free(void *byteptr) -> myfree;

Auto-generated Wrapper

void * mymalloc (size_t numbytes) {
Tcl_Obj *cmdvector[3];
void * retval;
do_redirect = 0;
cmdvector[0] = Tcl_NewStringObj("mymalloc_begin",-1);
cmdvector[1] = Tcl_NewLongObj(numbytes);
Tcl_EvalObjv(TclInterp,2,cmdvector,TCL_EVAL_GLOBAL);
retval = malloc (numbytes);
cmdvector[0] = Tcl_NewStringObj("mymalloc_end",-1);
cmdvector[1] = Tcl_NewLongObj(retval);
cmdvector[2] = Tcl_NewLongObj(numbytes);
Tcl_EvalObjv(TclInterp,3,cmdvector,TCL_EVAL_GLOBAL);
do_redirect = 1;
return retval;

}

My Claims

• Scripting languages offer large code
reuse base
– avoid wheel reinvention

• Focus on language improves
instrumentation interface design
– what commands/events do I want to add?
– what should their arguments be?
– what options should they take?
– when should control be transferred?

Scripting Needs:

• For dynamic analysis, some holes exist
• Event processing

– event pattern triggers rather than just
simple events

• Parsing
– perhaps something like DCG’s

• Logical inference capability
– embed some minimal WAM?

Reasons for Failure

• Slow!
– dynamic analysis is often compute

intensive
• Error-prone?

– weak or no typing can lead to surprising
errors

• Too many choices
– how to select a scripting language to use?

Reasons for Success

• Scripting languages provide an
incredibly rich context for programming

• Ideal foundation for building prototypes
and ad-hoc analyses

• Interfacing to a scripting languages
forces good design of instrumentation
interface

	Scripting RuntimeDynamic Analysis
	The Point
	Warning!!!
	Scripting Languages
	RT Dynamic Analysis Needs:
	Instrumentation
	Programming
	Scripting Has:
	DA Example in Tcl
	Tcl Continued
	Instrumentation Level
	Auto-generated Wrapper
	My Claims
	Scripting Needs:
	Reasons for Failure
	Reasons for Success

