Improving Design Pattern Instance Recognition by Dynamic Analysis

Lothar Wendehals
Software Engineering Group
Department of Computer Science
University of Paderborn
Warburger Straf3e 100
33098 Paderborn, Germany

lowende@upb.de

Abstract

Design pattern instance recognition is often done by static
analysis, thus approaches are limited to the recognition of
static parts of design patterns. The dynamic behavior of pat-
terns is disregarded and leads to lots of false positives during
recognition. This paper presents an approach to combine the
advantages of static and dynamic analyses to overcome this
problem and improve the design pattern instance recognition.

1. Motivation

Reverse engineering large industrial legacy systems is hard
work. They consist of several thousand or up to million lines
of code and often lack of documentation. The systems have
grown over several years and were developed by different
programmers with different programming styles.

Design recovery, which means extracting design documents
from source code, is a way to assist the reengineer understan-
ding and maintaining those systems. As a basis for design
documentation design patterns first presented by Gamma et
al. [4] are suitable. By recognizing instances of design pat-
terns in the system’s source code, the implicit design may be
recovered and documented. Further enhancements can then
be applied to the system.

Most approaches to design recovery use static analysis
techniques on the system’s source code [1, 6, 7, 12]. Some
of them are text-search tools based on regular expressions.
Other approaches use graph representations of the source co-
de, such as control flow or data flow graphs or even abstract
syntax trees.

In object-oriented languages those static analyses are not
sufficient. Polymorphism and dynamic method binding pre-
vent the correct analysis of method invocations that are es-
sential to recover patterns with behavioral aspects such as
the Chain of Responsibility pattern [4] depicted in Figure 1.

Some parts of a Chain of Responsibility pattern such as
the inheritance between the abstract class Handler and their
concrete children classes or the self-association successor of
the class Handler can be found by static analyzing techni-
ques. Method calls such as the delegation between a Handler
object and its successor can be found statically, but the con-
crete invoked method and the concrete object the method
is invoked on can only be analyzed during runtime.

Thus a precise recognition of design pattern instances with

*This work is part of theFINITE project funded by the German
Research Foundation (DFG), project-no. SCHA 745/2-1.

Ko7]

successor

Handler

handleRequest()®

FofF

ConcreteHandler1 ConcreteHandler2

Client

successor handIeRequest()lﬁ

handleRequest() handleRequest() e

if can handle {...}
else {
successor.handleRequest()

}

Figure 1: Chain of Responsibility pattern

dynamic behavior requires dynamic analysis. A complete
reengineering process based on dynamic analysis only is not
appropriate, because static parts of design patterns can be
identified easier in static analysis. So a smart combination
of static and dynamic analysis is desirable.

The combined reengineering process starts with the static
analysis of the source code. As a result of this first part of
the process a set of pattern instance candidates is produced.
This set is the input for the dynamic analysis part of the
process. It reduces the search space for the dynamic analysis.
During runtime of the program pattern instance candidates
only have to be investigated.

In the following an overview of our pattern-based design
recovery process is presented. An example for a pattern in-
stance is then given to clarify the limitations of static ana-
lysis. To lift this restrictions dynamic analysis is added to
design pattern instance recognition based on static analysis.
The paper closes with related work and some conclusions.

2. Pattern-based Design Recovery

In our approach described in [8, 9] we use an abstract
syntax graph (ASG) representation of the source code. This
ASG is produced by parsing the source code. It contains sta-
tic information about classes, attributes, methods including
method bodies and inheritance. Our approach is not bound
to any particular programming language. As a case study
we analyzed software systems written in Java.

We use additional nodes to enrich the ASG with infor-
mation gathered during analyses. Those nodes added to the
ASG are called annotations. They are linked to the nodes in
the ASG that have to be annotated with information.

A tool-based design recovery needs formalized rules for
the analysis. We developed a graphical rule definition lan-
guage based on graph-rewrite-rules with a left and a right
side. Each pattern that should be searched for is defined by
the left side of such a graph-rewrite-rule. The right side of
the rule consists of the pattern together with the annotati-
on node that has to be added to the ASG. By successfully
applying these rules to the ASG, pattern instances are reco-
vered. The information of a found pattern instance is stored
by the annotation node linked to the ASG elements that are
participating in the pattern’s instance.

By defining new rules, existing rules can be reused. Sim-
ple rules may be combined to new more complex and more
abstract rules. As a result a pattern rule catalog is formed
where rules depend on each other.

To support reverse engineering tasks where up to milli-
on lines of code are analyzed we developed a highly scala-
ble design recovery process. We showed that our approach
is applicable to real life software systems such as the Java
Abstract Windowing Toolkit (AWT) [11] with more than
140.000 lines of code [8, 9].

3. Static Analysis

Pattern-based design recovery is a deductive analysis pro-
blem where patterns, or rules, are repeatedly applied to a
representation of the source code to arrive at the most com-
plete characterization of the code permitted by the rules.
Pure deductive analysis algorithms typically apply the rules
involved level by level - bottom-up - according to their na-
tural hierarchy. Results from other researchers, such as [13]
and [10], suggest that a reverse engineering tool providing
fully automatic analysis based on this approach cannot scale
for larger software systems.

We developed a combined bottom-up and top-down stra-
tegy. The rules in the pattern rule catalog are sorted by
their natural dependency hierarchy. The analysis starts in
bottom-up mode with rules at the lowest level which are
rules that do not depend on others. After successfully app-
lying such a rule, consequent rules at the next level will be
triggered. If any rule depends on precondition rules that ha-
ve not yet applied, the strategy switches into the top-down
mode. After evaluating all preconditions the strategy chan-
ges back to bottom-up mode. The whole analysis algorithm
which ensures a highly scalable process can be found in [8].

In our ASG representation of the source code method bo-
dies are also contained as mentioned before. This enables
our static analysis to analyze parts of the dynamic behavior
of methods. The existence of method calls can be identified
but dynamic method binding and polymorphism prevents
to identify the actual called method and the actual object
the method is invoked on. It can only be a first indication
of dynamic behavior.

Figure 2 depicts an instance of a Chain of Responsibility
pattern shown in Figure 1. This example shows a part of
a model for a graphical user interface. There is an abstract
class GUIElement that implements a multiple self-reference
children. Concrete subclasses of this abstract class are a Win-
dow, a Panel and a Button. They override a method from
their superclass. The dotted line of the inheritance relation
denotes an indirect inheritance. So there are other classes in
between the inheritance hierarchy.

Suppose a pattern rule is defined to identify a Chain of
Responsibility pattern instance as shown in Figure 1. The

GUIElement [0.n

children

mousePressed()
JAN

| | |
Window Panel Button

mousePressed() || mousePressed() || mousePressed()

Figure 2: Concrete instance of a Chain of Responsi-
bility pattern

source code to be reengineered contains a Chain of Responsi-
bility pattern instance as depicted in Figure 2. During static
analysis there are some elements of uncertainty that prevent
an exact matching of this pattern instance.

The multiple self-reference of the abstract superclass GUI-
Element is different from the single reference successor of
the Chain of Responsibility pattern. This could be a coun-
ter indicator for a Chain of Responsibility pattern instan-
ce, because a chain element has always only one successor.
Another uncertainty derives from the indirect inheritance
hierarchy. The original pattern describes a direct inheritan-
ce between the abstract handler and its concrete handlers.
Furthermore the method call delegation from a handler to
its successor can not be identified exactly. A method call
from a handler to another handler can be statically identi-
fied, but it is not for sure that this call is forwarded in a
chain of objects.

This leads only to an inexact match. There are two ways
to handle this match. Firstly, this match can be discarded,
because it is different from the original defined pattern. Se-
condly, it could be accepted as a pattern instance candidate
with a low certainty of being a correct pattern instance. This
certainty is expressed as a fuzzy value. In [9] we describe how
to handle inexact pattern matches by fuzzy values.

The result of the overall static analysis is a set of pattern
instance candidates each rated by a fuzzy value. For some
of the candidates the certainty (fuzzy value) that they are
actual pattern instances is not very high because of dynamic
behavior that can not be analyzed statically as stated before.
Some of them may even be false positives. Dynamic analysis
can help to make these results more precise.

The analysis restricted to the candidates reduces the input
for dynamic analysis. To further reduce the search space,
our static analysis process provides the analysis of method
bodies as part of the ASG. Structural information about
method bodies such as a method call within a loop can be
used for refining the rules. This reduces not only the number
of candidates but also the number of methods that have
to be investigated by dynamic analysis. Methods that are
probably not participating in the pattern can be separated
from those that are relevant to the pattern.

4. Dynamic Analysis

The design patterns descriptions used by Gamma et al. [4]
are informal in most parts, for example the motivation, ap-
plicability, consequences and implementation. More formal
parts of a pattern description are the structure and some-
times the collaboration parts. The collaboration parts often

contain UML sequence diagrams with typical behavior of
the pattern constituents. Figure 3 shows such a sequence
diagram for the Chain of Responsibility pattern. Those des-
criptions of the dynamic behavior of patterns can be used by
the reverse engineer to formally define rules for tool-based
design recovery.

| b:Handler | | c:Handler

a:Handler |
T
|

handleRequest()

handleRequest()

Figure 3: Sequence diagram pattern for a Chain of
Responsibility

For each pattern with dynamic behavior a pattern for a
UML sequence diagram is added to the pattern’s rule. It
describes typical sequences of method calls between objects
that participate in the pattern. The diagrams can only be
samples for object interaction. Figure 3 for example only
shows three objects acting as a Chain of Responsibility. Ac-
tual chain of responsibilities may consist of more than three
objects.

Reengineering a program often aims at changing or adding
features. The program’s part to be reengineered is therefore
precisely defined. So the execution of the program for dyna-
mic analysis can be restricted to those parts. The execution
has to be done manually by the reengineer.

Information will be gathered during program execution
by debugging the program. Basic functionality of debuggers
allow to set breakpoints and record method traces. For each
pattern-relevant method from candidate classes breakpoints
are set. The pattern-relevant methods can be found by sta-
tic analysis as mentioned before. So object information and
their method traces are recorded during runtime. These in-
formation are stored as an attributed call graph and form
the data for the pattern instance recognition.

The procedure of the dynamic analysis is analog to static
analysis. After generating a call graph by executing the pro-
gram - which corresponds to parsing the source code into
an ASG in static analysis - the gathered information has to
be analyzed. The sequence diagrams are defined as graph-
rewrite-rules just like the static part of a pattern rule. The
matching of the sequence diagrams can now be done by ap-
plying their graph-rewrite-rules to the attributed call graph,
which again corresponds to applying the static pattern rules
to the ASG. Finally the results of both analyses - static and
dynamic - are rated by fuzzy values.

During runtime of the program there could be multiple
different object sets that are instances of one pattern instan-
ce candidate. For example a Chain of Responsibility-pattern
used in a program can be instantiated multiple times during
runtime. For each of these sets object type information and
method traces will be recorded. Polymorphism and dynamic
method binding enables method traces of the sets to differ
significantly from each other, even if they are instances of

the same pattern instance candidate. In our example there
could be object sets instantiated from the same Chain of Re-
sponsibility instance where the objects are different concrete
handlers. Method traces from those sets would be different.

| :Panel | | :Panel | :Button
x()
mousePressed()
y()
mousePressed()

y0
mousePressed(),

L

-

Figure 4: Method trace from a candidate object set

Figure 4 depicts an example for a object set and its me-
thod trace. These objects are instances from the class dia-
gram of Figure 2. This object set is therefore an instance of a
pattern instance candidate. There is a mouse pressed event
that is delegated from a Window object to the responsible
Button object. Some method calls as x() or y() may have
been recorded, too. Others may have been suppressed, as
method calls to different objects that were not investigated.

The matching between the pattern sequence diagram and
the method trace can only be inexact. There are three ob-
jects in the pattern sequence diagram depicted in Figure
3 delegating the handleRequest() method call to their suc-
cessor. This situation can be found in the method trace of
Figure 4 if naming is not considered. There is one additio-
nal object and there are additional method calls that do not
match any method call in the pattern. So a matching can be
found but it is ambiguous and inexact. The grade of ambi-
guity and inexactness has to be rated for each object set and
its method trace. The rating is expressed by a fuzzy value
within a range between 0 and 1 like in static analysis.

Both results from static and dynamic analysis are then
presented to the reengineer and has to be interpreted. There
are three cases that have to be considered for each pattern
instance candidate.

Firstly, there were no object set that was instantiated from
the candidate during program execution. So there is only a
result from static analysis. That means the features executed
do not use the program’s part the pattern instance candida-
te belongs to. Therefore the reengineer is not interested in
that program’s part and design and the results from static
analysis can be ignored.

Secondly, there are one or more object sets with their
method traces for one pattern instance candidate. In this
case the fuzzy values from all object sets are combined to
three values: the minimum, the average and the maximum
fuzzy value.

Suppose in our example there are five object sets instan-
tiated from the pattern instance candidate of Figure 2. Four
of these sets have a fuzzy value of 0.9 and one set has a
fuzzy value of 0.4. The average fuzzy value is 0.8. The static
analysis result for the given example is a certainty of 0.6
of being an actual Chain of Responsibility pattern instance.
The maximum fuzzy value from dynamic analysis confirms

this assumption. The minimum fuzzy value is a contraindi-
cation, but the average value shows that most of the fuzzy
values confirm the assumption. In the case of a low average
fuzzy value the result would indicate a false positive.

Thirdly, there are object sets for a pattern instance candi-
date, but the given sequence diagram could not be matched
to the call graph. All three fuzzy values - minimum, average
and maximum - will be null. This indicates that the pat-
tern instance candidate from static analysis can be clearly
identified as a false positive.

5. Related Work

Heuzeroth et al. [5] combine as well static as dynamic
analysis to detect interaction patterns. They approach is si-
milar to that presented in this paper. The source code is
represented by an abstract syntax tree (AST). Static pat-
terns are described as relations over AST node objects. The
computed relations are input to the dynamic analysis. Dyna-
mic patterns are described by protocols over a set of events.
The relations as well as the protocols have to be implemen-
ted manually, which means implementing the algorithms to
calculate the relations and to calculate the match of pro-
tocols. This restricts the usability of the approach because
of the complicated maintenance, adaption and creation of
patterns. Furthermore the approach for static analysis is li-
mited in recognizing implementation variants of patterns.
This leads either to lots of false positives or to missing pat-
tern instances. Lots of false positives in static analysis cause
then a higher complexity in dynamic analysis.

Eisenbarth et al. [2] combine static and dynamic analy-
sis as well. Their approach helps the reengineer identifying
components used for certain features. In contrast to the pre-
sented approach Eisenbarth et al. use dynamic analysis to
reduce the search space for static analysis. Scenarios for all
features that have to be located in the code are chosen for
the program’s execution. Concept analysis is then performed
to identify relationships between scenarios and subprograms.
These results are used in static analysis which is done by sli-
cing techniques and manual inspection. So the search space
should be small for static analysis.

6. Conclusions

An approach is presented to use dynamic program analysis
to confirm results from static analysis. The static analysis as
described in this paper is already implemented in our CASE
tool FusaBA [3]. The implementation of the dynamic analy-
sis is current work. Pattern rule specification and matching
for dynamic analysis will be realized by graph-rewrite-rules
as in static analysis. The inference algorithm [8] can there-
fore be reused.

We introduced the notion of fuzziness into our static ana-
lysis to rate pattern instance candidates [9]. This approach
is used for the rating in dynamic analysis, too. The combi-
nation of both results from static and dynamic analysis is
presented to the reengineer for each pattern instance can-
didate. The dynamic analysis results confirm or discard the
static analysis result. Thus, the combination is a good cri-
terion for the reliability of the results.

7. References

[1] G. Antoniol, R. Fiutem, and L. Christoforetti. Design
pattern recovery in object-oriented software. In Proc.

(13]

of the 6™ International Workshop on Program
Comprehension (IWPC), Ischia, Italy, pages 153-160.
IEEE Computer Society Press, June 1998.

T. Eisenbarth, R. Koschke, and D. Simon. Aiding
program comprehension by static and dynamic feature
analysis. In Proceedings of the International
Conference on Software Maintenance (ICSM 2001).
IEEE Computer Society Press, November 2001.

T. Fischer, J. Niere, L. Torunski, and A. Ziindorf.
Story diagrams: A new graph rewrite language based
on the unified modeling language. In G. Engels and
G. Rozenberg, editors, Proc. of the 6" International
Workshop on Theory and Application of Graph
Transformation (TAGT), Paderborn, Germany, LNCS
1764. Springer Verlag, 1998.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object
Oriented Software. Addison-Wesley, Reading, MA,
1995.

D. Heuzeroth, T. Holl, and W. Léwe. Combining static
and dynamic analyses to detect interaction patterns.
In Proc. of the 6" International Conference on
Integrated Design and Process Technology, June 2002.
R. Keller, R. Schauer, S. Robitaille, and P. Page.
Pattern-based reverse-engineering of design
components. In Proc. of the 21°¢ International
Conference on Software Engineering, Los Angeles,
USA, pages 226-235. IEEE Computer Society Press,
May 1999.

C. Kramer and L. Prechelt. Design recovery by
automated search for structural design patterns in
object-oriented software. In Proc. of the 3" Working
Conference on Reverse Engineering (WCRE),
Monterey, CA, pages 208-215. IEEE Computer
Society Press, November 1996.

J. Niere, W. Schifer, J. Wadsack, L. Wendehals, and
J. Welsh. Towards pattern-based design recovery. In
Proc. of the 24*" International Conference on
Software Engineering (ICSE), Orlando, Florida, USA,
pages 338-348, May 2002.

J. Niere, J. Wadsack, and L. Wendehals. Handling
large search space in pattern-based reverse
engineering. In Proc. of the 11" International
Workshop on Program Comprehension (IWPC),
Portland, USA, May 2003.

A. Quilici. A memory-based approach to recognizing
programming plans. Communications of the ACM,
37(5):84-93, May 1994.

SUN Microsystems. AWT, the SUN Java Abstract
Window Toolkit. Online at
http://java.sun.com/products/jdk/awt.

P. Tonella and G. Antoniol. Object oriented design
pattern inference. In Proc. of the 9" International
Conference on Software Maintenance (ICSM), Ozford,
UK., pages 230-238. IEEE Computer Society Press,
September 1999.

L. Wills. Using attributed flow graph parsing to
recognize programs. In Proc. of International
Workshop on Graph Grammars and Their Application
to Computer Science, LNCS 1073, Williamsburg,
Virginia, 1994, November 1996. Springer Verlag.

