
Languages for Dynamic Instrumentation

Steven P. Reiss, Manos Renieris
Department of Computer Science

Brown University
Providence, RI 02912-1910

401-863-7641, FAX: 401-863-7657
{spr,er}@cs.brown.edu

Abstract

Dynamic instrumentation has proven to be a valuable
technique for a variety of program analyses. However,
developing a new analysis based on dynamic instrumenta-
tion is difficult, error prone, and time-consuming. One
solution is to develop a common framework that would
enable quick and easy dynamic instrumentation for a vari-
ety of applications. Developing a practical solution along
these lines, however, requires that we understand and
effectively model how instrumentation can and should be
used. We suggest that an event-oriented framework based
on program analysis might be a viable approach to achiev-
ing such a practical solution.

1.  Motivation

Dynamic analysis has been used for a wide variety of
different applications, from simple profiling to program
understanding. We have been using it in a variety of
projects for performance analysis, visualization, program
modeling, and fault location. In most of the applications of
dynamic analysis, the technique has demonstrated itself as
an invaluable tool that is able to provide insights far
beyond those of static analysis.

Even so, dynamic analysis still sees only limited use in
day-to-day applications, in today’s programming environ-
ments, and by most programmers. There are several
reasons for this disparity, but most rise from the fact that
dynamic analysis is expensive, both in terms of the over-
head involved in collecting the appropriate data, in terms of
developing practical instrumenters, and in terms of devel-
oping tools that can use the data.

What is needed is a framework to support dynamic anal-
ysis that could be used practically for a variety of different
applications. If such a framework existed, it would be rela-
tively easy to develop new applications of dynamic analy-
sis and to incorporate them into today’s programming
tools. Some requirements, like minimizing instrumentation
overhead, are often too difficult to achieve for any single

application. Developing a framework that addresses them
would empower developers to use dynamic-analysis based
tools as part of their everyday programming.

In this position paper, we outline some of the interesting
research issues that arise in attempting to define (and later
implement) such a framework.

2.  Requirements

A practical dynamic analysis framework has to meet a
broad range of requirements. These are needed both to
make it applicable to a variety of different applications and
to ensure that it can be used on a variety of real systems.
These requirements include:

• Low usage overhead. The user should have to do as lit-
tle as possible to get the leverage of the tool. At best,
the user could run the tool externally, as with valgrind
[7]. At worst, the tool should require recompilation, but
in this case it should be integrated with the compiler,
and provided as an option within it or a script around it.

• Low execution overhead. The resource requirements of
the tool should be minimal. Minimizing the tools’ over-
head by intelligent, problem-specific instrumentation
should be the primary goal of the framework.

• Static selectivity. The user should be able to specify
what portions of the system should be instrumented and
what data should be collected. This should be available
at as fine a level as possible. The selection of what to
instrument and what data to collect should be based on
the structure and semantics of the program. This
implies that dynamic analysis should be predicated on
some underlying static analysis.

• Source anchoring. The debugging information pre-
served in binary formats is often inadequate to produce
meaningful messages for more complex program analy-
ses, especially in the presence of optimization. Depend-
ing on how close the tool is to the compiler, this is more
or less of a challenge. From the user perspective,
though, it should always seems as if the tool has all the
information the compiler has.



• Temporal selectivity. Instrumentation should be limited
not only by specific portions of the program, but also by
those parts of the execution that are relevant to the task.
This temporal information might be determined a priori
or dynamically.

• Handling of real programs. A problem with today’s
dynamic instrumentation tools is they often are not
capable of handling the wide range of programs that
developers are interested in. The next three require-
ments follow from this.

• Handling of libraries. Much of the work in today’s
applications is done inside system or user libraries. To
do appropriate analysis, one often needs dynamic infor-
mation from these libraries. Moreover, to understand
the semantics of the application, one must often under-
stand the semantics of the libraries. This requirement
becomes more complex when one realizes that source is
often not available for many libraries. In any case, an
instrumentation framework should at least provide for
data collection at the boundary of libraries.

• Handling of multithreaded programs. Java and C# pro-
grams are often multithreaded. An instrumenter needs
to be able to deal with the underlying complexities both
in terms of collecting appropriate data and in terms of
not imposing additional synchronization points on the
application and thus changing its behavior.

• Handling of whole systems. Many of today’s programs
are actually multiple-process distributed systems. The
analysis and hence instrumentation that needs to be
done on these systems will require correlating data
accumulated from the different processes into a single
analysis.

• Usable Results. Another key problem in today’s instru-
menters is that the data that is produced is often very
specific to a particular application and not easy to reuse
in other applications. What we need is a relatively stan-
dard data format that can serve as the basis both for
immediate and deferred analysis.

Meeting these requirements will be difficult. However,
by using the collective experience from current instrument-
ers, static analyzers, aspect-oriented programming, and
other areas, it should be possible to develop an appropriate
framework.

3.  Framework Overview

We envision a framework that is built on two languages.
The first is used to let a tool define what portions of a
system should be instrumented and what information is
required from those portions. This will be used by a instru-

mentation tool to produce one or more event streams
describing appropriate portions of the execution.

The second language will let a tool define how these
event streams should be processed to produce the data
needed for analysis. This could involve generating higher-
level events streams, accumulating information, tracking
program or object states, or other analysis techniques. The
framework would use this description to process the events
as they were generated as efficiently as possible.

Central to this framework is the notion that both lan-
guages can make direct use of information about the
system being analyzed. This means that they should be
able to refer to basic blocks, to the definitions and uses of
particular variables or fields, to def-use chains, and to par-
ticular packages, libraries, and routines.

4.  Instrumentation Definition Language

The first part of this framework is dependent on a lan-
guage that lets the developer describe the information that
needs to be collected from dynamic instrumentation at a
fine level of detail. The actual instrumentation is addressed
by systems like EEL [4], SOOT [9], or JikesBT [3]. We
after a language similar to the languages for specifying
pointcuts in aspect-oriented programming [6,8].

This language should be geared toward generating event
streams. Events are a general purpose mechanism that
closely matches the methodology of run time instrumenta-
tion. The underlying framework will have to deal with
many types of parameterized events, including:

• Call/Return of a method;

• Definition/Use of a value;

• Enter/Exit of a basic block;

• Throw/Catch of an exception;

• Create/Start/Stop/Wait/IO/Run of a thread;

• Read/Write of a location or field;

• Allocate/Free of an object;

• Send/Receive of a message;

• Program specific events.

The set of events that are relevant to a particular
program or run needs to be specified in a high level way.
This will sometimes be done globally (e.g. interest in all
call/return events for profiling), and sometimes very
program specific (e.g. when does field X change in method
Y; when is method A called with parameter B). Moreover,
the set of events generally should be independent of the
code.

In both cases static analysis of the program, typically
done at the byte or machine code level, will be appropriate.
This analysis should let one specify, for example:



• That one wants to detect the start of each basic block.
The resultant instrumentation could then make use of
control flow analysis to minimize the amount and size
of instrumentations.

• That one wants to track field accesses for a particular
set of field writes. This would require data flow analysis
to determine which reads in the program might be rele-
vant to the particular writes.

• That one wants to detect calls to a particular set of
methods for objects allocated at a certain point in the
program. For example, one might want to check that a
particular instance of a Java iterator is used correctly.

• That one wants to detect reads and writes of shared
storage. This would require static analysis to determine
what fields can be accessed by multiple threads and
which accesses to those fields should be considered
shared.

The research in this area is to attempt to put together a
language that allows an analysis application to specify
what set of events it wants from the program. This could
either be a language per se, an XML file describing the set
of events, or event an appropriate set of function calls and
callbacks.

This language will have to deal with all the issues out-
lined above — handling a wide range of events, being able
to specify those events to apply to the whole program or
large portions of it, being able to restrict those events to
particular locations based on semantic properties of the
program, and allowing a variety of different parameters to
be associated with each event.

To leverage such a language it is necessary to build an
appropriate implementation. This is again a research
problem involving what and how to do the static analysis
needed to minimize instrumentation, techniques for
dynamically inserting and removing instrumentation, and
automatic optimization of instrumentation based on
semantic information.

5.  Analysis Language

While event streams are a logical conceptual output
from an instrumentation front end, what is often needed is
the result of analysis based on the event stream rather than
the event stream itself. There are several different types of
such analysis that are particular to the applications of
runtime instrumentation. The inspiration comes from lan-
guages for higher level debugging, like COCA [2] and
QBD [5].

For visualization and some program understanding
applications, it will be desirable to map the event stream
into a sequence of higher-level events. This can occur
within an event stream (for example, mapping basic block

event to program path events), or it might occur among
multiple event streams (for example, taking information
about monitor entry and exit events from multiple threads
and using this to generate events denoting what threads are
blocking on what other threads).

For performance analysis and related applications, it is
desirable to accumulate information from the event
sequence. One might want to look at the total number of
calls of each method, the number of allocations of each
class, the time spent in each method, or the number of calls
of each method pair. This information might be further
confined by accumulating information by class or package
or event according to higher-level events such as user inter-
face interactions or remote procedure calls.

Another application area for run time instrumentation is
involves the dynamic checking of semantic properties of a
system. These properties are typically specified using finite
state systems (either using pure or extended FSMs, using
regular or path expressions, or using a language such as
LTL or CTL [1]). What one wants to get out of instrumen-
tation here is whether the actual program run satisfied or
did not satisfy the specification. This implies that the
sequence of run time events generated by the front end
needs to be filtered and then use to check against the under-
lying automata.

In each of these cases, the appropriate analysis can be
done either after the fact or while doing tracing. After the
fact analysis is easier in that one can isolate the analysis
from the instrumentation and can easily do several different
analyses of the same instrumented run. This is advanta-
geous, for example, in software visualization where the
user will want to see different views of the run and the
exact nature of those views might not be known in
advance.

In most applications, however, the raw event streams are
going to be substantially larger and more complex than the
results of the analysis. Here, it is much more effective to do
the event analysis on the fly, storing only the accumulated
result. An ideal instrumentation environment should
provide a stream-based processing language that would
facilitate this. Again, this could be a real language, a high-
level XML description of what needs to be done, or simply
a reasonable programming interface that facilitates the
appropriate processing.

We note that this language and facility will probably
need to have access to the semantic analysis that was used
in doing the actual instrumentation in order to correctly
interpret the events. This information will either have to be
recomputed or will be stored in auxiliary files as part of the
instrumentation process.

The interesting research issues here are first attempting
to determine the appropriate range of analyses that should



be doable dynamically, in determining what is an appropri-
ate interface for doing these analyses, and in providing a
very efficient but generic implementation mechanism that
will support the analyses. Other research issues that come
up involve ways of combining multiple event streams in the
analysis milieu and doing all this without significantly
affecting the behavior of the program being instrumented.

6.  Example Approaches

While we have not built anything that meets the needs
outlined above, we have and continue to work on a variety
of different approaches that make us believe that the
general mechanisms described here can be achieved.

We currently support several different instrumenters for
different applications. For software visualization, we have
two instrumenters, one for C/C++ and one for Java. Both
are capable of instrumenting the user’s application and all
the appropriate libraries. Both handle multiple threads and
offer a limited degree of selectivity as to what information
to obtain. While the initial data is obtained as a set of inde-
pendent event streams, one per thread, this data is pro-
cessed dynamically into a common sequence. Additional,
on-the fly or after-the-fact processing can be done within
the system for a wide variety of different resultant analy-
ses. Still, one of the best experiences we have had with
such systems was in minimally modifying the profiling
library of the compiler to produce a trace of function calls
and returns. The system was very easy to implement. It was
also very easy to use, since it required as much effort as
profiling.

For dynamic visualization of software, we have devel-
oped an instrumenter that accumulates a variety of data
over millisecond time intervals and passes the accumulated
data to a front end. Using a variety of techniques, we were
able to limit the performance loss due to instrumentation
(which includes every call, return, allocation, thread state
change, and synchronization event) to a factor 2-3.

Finally, we are developing a tool for checking finite
state properties of programs through a combination of
static and dynamic checking. Given a description of a
program property, this tool is able to find the relevant loca-
tions in the source that affect that property, determine
whether the property needs to be checked dynamically or if
it can be determined statically, and, in the case where
dynamic checking is necessary, it actually determines
exactly what instrumentation is needed to check the prop-
erty.

7.  Acknowledgements

This work was done with support from the National
Science Foundation through grants ACI9982266,

CCR9988141, and CCR9702188 and with the generous
support of Sun Microsystems.

8.  References

[1] Edmund M. Clarke, Orna Grumberg, and Doron A.
Peled. Model Checking. The MIT Press, Cambridge, Mas-
sachusetts, 1999.

[2] Mireille Ducasse. Coca: A debugger for C based on
fine grained control flow and data events. In Proceedings of
the 21st International Conference on Software Engineer-
ing, pages 504-515. ACM Press, May 1999.

[3] Chris Laffra, Doug Lorch, Dave Streeter, Frank Tip,
and John Field. Jikes bytecode toolkit. http://
www.alphaworks.ibm.com/tech/jikesbt.

[4] James R. Larus and Eric Schnarr. EEL: Machine-
independent executable editing. In Proceedings of the
ACM SIGPLAN’95 Conference on Program- ming Lan-
guage Design and Implementation (PLDI), pages 291-300,
La Jolla, California, 18-21 June 1995.

[5] Raimondas Lencevicius, Urs Holzle, and Ambuj K.
Singh. Query-based de- bugging of object-oriented pro-
grams. In Proceedings of the ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages and
Ap- plications (OOPSLA-97), pages 304-317, October
1997.

[6] Hidehiko Masuhara and Gregor Kiczales. Modular
crosscutting in aspect- oriented mechanisms. In Proceed-
ings of the 2003 European Conference on Object-Oriented
Programming, 2003.

[7] Julian Seward. Valgrind. http://developer.kde.org/
~sewardj.

[8] David B. Tucker and Shriram Krishnamurthi. Point-
cuts and advice in higher-order languages. In Proceedings
of the 2003 International Conference on Aspect-Oriented
Software Development, Boston, Massachusetts, March
2003.

[9] Raja Vall’ee-Rai, Laurie Hendren, Vijay Sundare-
san, Patrick Lam, Etienne Gagnon, and Phong Co. Soot - a
Java Optimization Framework. In Pro- ceedings of
CASCON 1999, pages 125-135, 1999.


	Languages for Dynamic Instrumentation
	Steven P. Reiss, Manos Renieris
	Department of Computer Science
	Brown University
	Providence, RI 02912-1910
	401-863-7641, FAX: 401-863-7657
	{spr,er}@cs.brown.edu
	Abstract
	1. Motivation
	2. Requirements
	3. Framework Overview
	4. Instrumentation Definition Language
	5. Analysis Language
	6. Example Approaches
	7. Acknowledgements
	8. References





