
Dynamic Analysis from the Bottom Up

Markus Mock
University of Pittsburgh

Department of Computer Science
6405 Sennott Square, Pittsburgh, PA 15260, USA

mock@cs.pitt.edu

Abstract

Changes in the way software is written and deployed to-
day render static analysis increasingly ineffective. Unfor-
tunately, this makes both traditional program optimization
and software tools less useful. On the other hand, this also
means that the role and importance of dynamic analysis is
continuing to increase. In the future, we believe dynamic
analysis will be successful both in program optimization
and in software tools. One important ingredient to its suc-
cess lies in efficient profiling methods. This paper looks at
how this goal can be realized by exploiting already existing
hardware mechanisms and possibly new ones. We believe
that this will lead to software tools that are both effective
and minimally invasive, easing their adoption by program-
mers.

1. Introduction

From its early beginnings, static analysis has been a huge
success story. It is routinely used in optimizing compil-
ers to ensure the correctness of code improving transfor-
mations. It is also commonly used in programming tools
(e.g., smart editors) and software tools designed to facilitate
the debugging and evolution of software, for instance, in
program slicers. On the one hand, static analysis has been
so successful because its use is unintrusive and does not
require running the program or any other user intervention,
and typically the user is completely unaware of its presence.
On the other hand, to achieve practically useful results, typ-
ically the whole program, or large parts thereof have to be
available to the analysis.

Unfortunately, this traditional model has been eroding
over the last years thereby rendering traditional static anal-
ysis methods ever less effective. Since software is now
routinely deployed as a collection of dynamically linked li-
braries, and more recently, also as Java bytecode that is de-
livered dynamically and on demand, static analysis in com-

pilers and other programming tools knows less and less of
the finally executing program. This forces it to make con-
servative assumptions that result in analysis results that are
too imprecise to be useful either for program optimization
or program “understanding” tasks.

While traditional static analysis is of limited effective-
ness in these new dynamic software environments,dynamic
program analysis[3] will play an increasingly important
role to realize tasks that have become inefficient with static
analysis alone. Moreover, dynamic analysis will enable new
powerful techniques – both in optimization and program un-
derstanding – that are impossible to achieve with static anal-
ysis alone.

For some time now, dynamic (i.e., run-time) informa-
tion has been used in optimizing compilers in the form of
feedback-directed optimization where run-time information
is used to aid the static program optimizer to make better
optimization decisions – decisions, that would otherwise
have to rely on static heuristics, which generally result in
less effective optimization. More recently, run-time infor-
mation has been exploited in dynamic compilation systems
and just-in-time (JIT) compilers to which the complete pro-
gram is available, which makes their analyses often quite
successful [1].

While leveraging dynamic information in such systems
has become quite popular, the use of dynamic analysis in
software tools designed to assist the software engineer is
still in its infancy. While the use of dynamic information
in program optimization systems is always confined by the
constraint of soundness – a potentially faster but possibly
incorrect program has to be avoided –, tools designed to
assist a human in a software engineering task are free of this
restriction. Moreover, in many cases the results of a static
analysis, although sound, may be considerably less useful
than the potentially unsound result of a dynamic analysis,
for instance, if it overwhelms the user with too much data.

For all the foregoing reasons, we believe that dynamic
analysis algorithms, modeled after classical static analyses
will be both important and useful in future software de-



velopment environments. Unconstrained by the yoke of
soundness, dynamic analysis is likely going to be even
more successful in software engineering applications than
the promise it has already shown in run-time optimization.
Crucial to the wider success of dynamic analysis, however,
is the creation of efficient profiling methods to collect dy-
namic information unintrusively and with little performance
overhead.

Therefore, we propose to design dynamic analysis sys-
tems “from the bottom up”. Currently existing hardware
mechanisms can be exploited to make the collection of run-
time information more efficient. Software engineers inter-
ested in dynamic analysis should also work with hardware
designers and compiler writers to participate in the design
of new architectures that enable the efficient collection of
data that can assist them in building more powerful and ver-
satile dynamic analysis systems.

The rest of this paper is organized as follows: Section 2
discusses two future directions in the application of dy-
namic analysis. Section 3 looks at how to achieve efficient
profiling methods as one essential ingredient in making dy-
namic analysis successful. Section 4 discusses related work
and Section 5 concludes.

2. Future Directions in Dynamic Analysis

As the usefulness of static analyses decreases, dynamic
analysis approaches are becoming more attractive. We see
several interesting research directions for dynamic analysis
in the coming years:

• research on how to effectively exploit run-time infor-
mation to optimize programs;

• research on the application of dynamic analysis to im-
prove software tools that assist programmers in the un-
derstanding, maintenance, and evolution of software;
since such tools do not necessarily have to produce
sound results this may be the “killer application” for
dynamic analysis;

• research on the efficient collection of run-time in-
formation; this includes research into combined
hardware-software approaches that will lower the cost
of collecting run-time information.

In the following two sections, we will briefly discuss the
first two items, which represent two broad application areas
for dynamic analysis. In Section 3 we will then elaborate on
the last point, which is fundamental for the wider success of
dynamic analysis.

2.1 Program Optimization with Dynamic Analy-
sis

To achieve good program performance, increasingly run-
time information will be necessary to perform effective
code-improving transformations. The fundamental con-
straint for program optimization, though, is soundness,
which is at odds with the unsound nature of dynamic analy-
sis. However, we believe that a symbiosis of static and dy-
namic analysis will not only be effective but in fact crucial
for the success of program optimization of future software
systems.

Results of static analysis are always conservative ap-
proximations of actual run-time behavior; when programs
are only partially known, this problem is exacerbated be-
cause worst case assumptions have to be made for all un-
known code parts. On the other hand, program properties
may in fact be true in most, if not all, runs despite the in-
ability of static analyses to demonstrate this. For instance,
[9] has shown that the statically computed sets of potential
pointer targets in pointer dereferences in C programs are
several orders of magnitude larger than the number of actu-
ally observed targets. Consequently, optimizing compilers
are often not able to allocate variables to registers because
of aliases through pointer accesses,1 even though those ac-
cesses at run-time never or almost never overwrite the vari-
able’s value.

Fortunately, static and dynamic analysis may be com-
bined in this case to improve what can be done with static
analysis alone. One approach consists of generating mul-
tiple code versions, one, in which code is optimized ag-
gressively assuming that no aliasing occurs even though the
static analysis is not able to ascertain this. The decision
when this specialized code should be generated would be
based on a dynamic analysis that checks at program execu-
tion whether aliasing does occur. A run-time check would
then be inserted in the code to select the correct code ver-
sion and ensure soundness.

Similarly, other program properties that are usually in-
ferred by static program analysis, might be observed at run
time. Static analysis would then be used to generate appro-
priate run-time checks to ensure the soundness of program
transformations that depend on the correctness of those
properties. Investigating what properties are both useful
and efficiently derivable by dynamic analysis, is an interest-
ing research area for the combination of static and dynamic
analysis as well as the exploration of synergies arising from
that combination.

1Alternatively, if they are allocated to registers, after every possibly
aliased write through a pointer, the register value has to be reloaded, which
may neutralize the benefit of register allocating the variable.



2.2 Improving Software Tools with Dynamic
Analysis

Whereas dynamic analysis will generally have to be
complemented by static analysis to be applicable in pro-
gram optimization, software engineering tools may enjoy
the benefits of dynamic analysis in many cases even with-
out supporting static analysis. As has been observed by sev-
eral researchers, in many cases unsound information may be
just as useful or even more useful than sound information in
software engineering applications.

The key to the usefulness of dynamic analysis again is
the (increasing) imprecision of static analyses. While static
analyses may provide a sound picture of program proper-
ties. this picture may be too complex to be useful in prac-
tice. As an example, consider again pointer analysis. A
static points-to analysis2 may compute several hundreds or
even thousands of potential pointer targets for a dereference.
When a user wants to understand what are in fact the fea-
sible targets, a points-to set of that size will be too large to
be examined completely. Moreover, the static analysis does
not provide any insights into which of those targets are more
likely than others to show up in practice.

On the other hand, a dynamic points-to analysis [9]
shows only those points-to targets that have actually oc-
curred at run time. While this set may not be sound, i.e.,
miss some targets that may in fact be feasible, since dy-
namic points-to sets are typically very small, they can be
much more useful because the enable the programmer to
focus on definitely feasible targets, which in addition, may
be prioritized by the frequency of occurrence, so that any
subsequent task can be focused to examine the more im-
portant (more frequent, or more likely) analysis results first.
Dynamic pointer information has been used, for instance, to
improve program slicing [8].

3 Dynamic Analysis from the Bottom Up:
Achieving Efficient Profiling

One of the fundamental challenges for the success of dy-
namic program analysis lies in the creation of instrumen-
tation and profiling infrastructures that enable the efficient
collection of run-time information. Current approaches typ-
ically result in significant program slowdowns [9, 5] so that
they are confined to offline use. They are also not invisi-
ble to the user and typically additional effort is required to
integrate them with current software tools. While this may
be acceptable when the result is directly consumed by the
user of a dynamic analysis tool, when the dynamically de-
rived information is subsequently used to transform a pro-

2A points-to analysis computes for each pointer dereference in a pro-
gram the set of potential targets accessed by the dereference, called the
points-to setof the dereference.

gram for instance, faster turnaround times will significantly
enhance the usability of tools based on dynamic analysis.
Moreover, if dynamic analysis can be performed with min-
imal overheads during normal program executions, it may
become routine and not require any additional effort from
software engineers to tap into the generated information.

In our opinion, one particularly promising approach to
reduce profiling overhead lies in the collaboration with
computer architects. Processor designers dispose of more
hardware resources than ever so that it is not unreasonable
to expect that additional structures to support efficient dy-
namic analysis may be placed on chips if they provide a
significant enhancement of functionality. Moreover, very
simply hardware structures may suffice and can potentially
make a big difference in performance. For example, the ad-
dition of hardware data watchpoints in modern processors
(for example the Intel Pentium), enables a debugger such as
gdb to monitor all memory accesses to a particular variable
(or set of variables) without noticeable performance degra-
dation on the program. When such hardware support is not
present, monitoring the contents of a variable becomes of-
ten prohibitively expensive – typical software implemen-
tations based on trapping after every instruction, result in
slowdowns of a factor of 100.

The additional hardware required to support data watch-
points, on the other hand, is minimal. Similarly, for many of
the properties we are interested in dynamic program analy-
sis it may be possible to achieve big performance improve-
ments with simple hardware support. Current processors al-
ready have many hardware performance counters, which are
used in profiling for program performance. Maybe future
architectures will have “analysis counters” to assist soft-
ware engineers in building fast dynamic analysis tools. If
we can show that such support is useful for the software
community as a whole, we should have a good case for their
realization in silicon.

The following sections will look at potential mechanisms
to aid in two particular dynamic analysis tasks: points-to
profiling and invariant detection.

3.1 Example One: Points-To Profiling

Maintaining a mapping from the current addresses of
local and heap-allocated variables to their compile-time
names accounts for the major part of the cost of points-to
profiling.3 If the compiler could simply load the monitored
addresses into a hardware table and all load and store in-
structions would automatically be checked against this table
(simultaneously updating the associated access statistics),
points-to profiling would only add a small amount of extra

3The addresses of local variables usually change with each invocation
and multiple addresses are usually associated with the same memory allo-
cation site.



work (the initialization of the address table at procedure en-
try and at each malloc site). In current software implemen-
tations, for every load and store instruction tens or hundreds
of instructions have to be executed resulting in slowdowns
of one to two orders of magnitude [9].

Some current processors, e.g., the Intel Itanium, already
support a similar, though more limited hardware structure
(the ALAT table [7]), which, however, cannot be directly
loaded by the compiler (it is manipulated indirectly through
special load instructions used for optimization). Therefore,
it appears not unreasonable to assume that a more general
mechanism similar to the one described above, may eventu-
ally be implemented in hardware.

3.2 Example Two: Invariant Detection

Another field where compiler and architecture support
can be used to improve the applicability of dynamic analysis
is invariant detection. In the Daikon [5] system, invariants
are detected offline after a profiling urn of an instrumented
program. Obviously, for dynamically updated software this
two-phased approach does not directly work since the pro-
gram needs to be re-instrumented as it is running. More-
over, it may actually be desirable to detect some invariants
as the program is running, for instance when invariants rep-
resent security-relevant properties.

Arnold and Ryder [2] present an approach to reduce the
cost of instrumented code by providing a mechanism to dy-
namically enable and disable the profiling of selected pro-
gram parts. Their approach could be combined with Daikon
in a run-time system that would automatically instrument
dynamically changing code. The dynamically updated code
could then be gradually profiled to detect its (local) invari-
ants and as soon as invariants stabilize, profiling would be
disabled until the next software update. This would enable
invariant detection while a system is running, at potentially
very little overhead, so that invariant detection could remain
in place even in deployed software.

This would make exciting new applications possible. For
instance, software could be shipped with previously de-
tected or specified invariants. As the system runs, these
invariants could be compared against those detected in the
field. Discrepancies, which might indicate, for example, in-
sufficient testing, could then be reported back to the devel-
oper to either correct the software or the invariants.

4. Related Work

PREfix [4] was one of the first tools that tried to over-
come the imprecision of static program analysis by a sys-
tematic exploration of program execution paths along which
certain program properties were checked. It was shown to
be very effective in detecting program errors that were not

detectable by static analysis. Ernst [5] has focused on de-
tecting likely program invariants, which can then be used to
reason about programs or in error detection. The DIDUCE
system [6] uses dynamic program analysis to detect unusual
program states which are likely to indicate program bugs.

5. Conclusions

Due to changes in the way software is written and de-
ployed today, the effectiveness of static analysis is decreas-
ing. Therefore the importance of dynamic analysis will con-
tinue to increase. Consequently, improving the usability of
dynamic analysis tools by making them less intrusive and
more efficient is one of the main challenges for dynamic
analysis researchers today. By designing dynamic analy-
ses from the bottom up, and in collaboration with compiler
writers and computer architects, we believe that efficiency
and ease of use will be achieved and make dynamic analysis
a standard feature of future software systems.

References

[1] M. Arnold, S. Fink, D. Grove, M. Hind, and P. F. Sweeney.
Adaptive optimization in the Jalapeño JVM. In Proceedings
of the Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, pages 47–65, Minneapo-
lis, MN, USA, Oct. 2000.

[2] M. Arnold and B. G. Ryder. A framework for reducing the
cost of instrumented code. InProceedings of the ACM SIG-
PLAN’01 conference on Programming language design and
implementation, pages 168–179. ACM Press, 2001.

[3] T. Ball. The concept of dynamic analysis. InESEC / SIG-
SOFT FSE, pages 216–234, 1999.

[4] W. R. Bush, J. D. Pincus, and D. J. Sielaff. A static analyzer
for finding dynamic programming errors.Software Practice
and Experience, 30(7):775–802, June 2000.

[5] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to support
program evolution. InInternational Conference on Software
Engineering, pages 213–224, 1999.

[6] S. Hangal and M. S. Lam. Tracking down software bugs using
automatic anomaly detection. InProceedings of the 24th in-
ternational conference on Software engineering, pages 291–
301. ACM Press, 2002.

[7] Intel Corporation.Intel Itanium 2 Processor Reference Man-
ual for Software Development and Optimization, 2002.

[8] M. Mock, D. C. Atkinson, C. Chambers, and S. J. Eggers.
Improving program slicing with dynamic points-to data. In
Proceedings of the 10th ACM International Symposium on the
Foundations of Software Engineering, Charleston, SC, Nov.
2002.

[9] M. Mock, M. Das, C. Chambers, and S. J. Eggers. Dynamic
points-to sets: A comparison with static analyses and poten-
tial applications in program understanding and optimization.
In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Work-
shop on Program Analysis for Software Tools and Engineer-
ing, pages 66–72, Snowbird, UT, USA, June 2001.


