

Efficient Instrumentation for Performance Profiling

Edu Metz, Raimondas Lencevicius
Nokia Research Center

5 Wayside Road, Burlington, MA 01803, USA
Edu.Metz@nokia.com Raimondas.Lencevicius@nokia.com

1. Introduction

Performance profiling consists of tracing a software
system during execution and then analyzing the obtained
traces. However, traces themselves affect the performance
of the system distorting its execution [5]. Therefore, there
is a need to minimize the effect of the tracing on the
underlying system’s performance. To achieve this, the
trace set needs to be optimized according to the
performance profiling problem being solved. Our position
is that such minimization can be achieved only by adding
the software trace design and implementation to the
overall software development process. In such a process,
the performance analyst supplies the knowledge of
performance measurement requirements, while the
software developer supplies the knowledge of the
software. Both of these are needed for an optimal trace
placement. The following sections expand on this
position.

2. Performance profiling

Performance profiling is the means of determining
where a software system spends its execution time. It uses
trace instrumentation to gather event data. Various types
of event information can be obtained with traces, such as
component entry and exit, function calls, software
execution states, message communication, resource usage,
etc. However trace instrumentation comes at a cost — it
impacts the performance of a software system [3][6]. For
example, resource tracing is most of the time more
intrusive then tracing function calls.

Not only does event tracing take some time, adding
traces changes the behavior of the software system
because of additional memory and I/O accesses [1]. In
addition, in a real-time software system, instrumentation
could possibly result in violation of real-time constraints
and timing requirements. Trace instrumentation reduces
the validity of performance profiling, so instrumentation
has to be kept to a minimum.

2.1. Minimizing Performance Impact

There is a need to minimize the performance impact
of trace instrumentation. To achieve this, we need to
create efficient instrumentation. To instrument
effectively, it is essential to know what events to monitor
during execution of the software system and what
information to collect when the event occurs. When
instrumenting the software, it is essential to understand
the purpose and goals of each trace and how it will affect
the instrumented software component. From the
performance profiling point of view, a "good" trace not
only records the required event information; it also
minimizes the impact on the system's performance, and
does not violate any constraints and requirements.

In choosing the instrumentation granularity, it is
important to address the trade-off between the amount of
event information required and the performance impact
of the trace instrumentation. For example: permanent
OS traces in the scheduler report when a task switch
occurs. These traces do not indicate if the task switch is
due to preemption by a higher priority task or
completion of the current running task. The duration of
a task activity cannot be calculated based on OS
scheduling traces only. It requires additional
instrumentation. However, these additional traces will
further impact the performance of the software system.

It should be noted that creating an efficient
instrumentation does not eliminate the performance
impact of trace instrumentation but rather tries to
minimize the performance impact.

Let us summarize what we just talked about: efficient
instrumentation for performance profiling imposes the
following requirements:

• minimize the number of instrumentation points
• minimize the runtime overhead, and
• guarantee constraints and requirements.

2.2. Efficient Instrumentation

We need to establish instrumentation that meets the
requirements outlined in the previous section. This can

be a complicated task, particularly in industry, where
software development and performance profiling are often
performed by different individuals each with their own set
of skills and knowledge. Software developers have
detailed knowledge of the software implementation. They
understand the purpose of each instrumentation point and
are able to assess the impact the instrumentation will have
on the functional behavior of a software component.
However, developers lack the understanding of what
event data is needed. In addition, they may not be eager to
insert event traces simply because they will not use them.
On the other hand, performance analysts know what
events need to be traced and understand what information
needs to be recorded when an event occurs. However,
performance analysts lack a detailed understanding of the
software. We propose to draw upon the knowledge and
skills software developers and performance analysts bring
with them and use this knowledge to create efficient trace
instrumentation.

To achieve this, we need to add trace instrumentation
for performance profiling to the software development
process. During the requirements phase the performance
analyst should identify system-level performance
requirements such as response time, throughput, and
resource utilization, and start determining the events that
need to be traced to check these requirements. For
example, if the system level performance requirements
state a maximum response time then the software’s main
entry and exit events (events e1 and e2 in Figure 1) need
to be traced. However, it is not always possible to identify
instrumentation points for all system level performance
requirements during the requirements phase. For example,
validation of resource utilization requirements requires
knowledge of the software’s execution states, which are
not known until the design phase. Furthermore, only
system level performance requirements are known during
the specification phase. During the design phase, the
performance analyst should identify lower level
performance requirements such as messaging latency,
interrupt response times, real-time deadlines, and time
spent in the kernel. Next, the performance analyst should
determine the events that need to be traced to check these
requirements (for example, events e3 and e4 in Figure 1
as well as other events marked with black dots) and
specify the event data that needs to be recorded when the
event occurs. Typical events that need to be traced
include: component entry and exit points, function calls,
state transitions, message send and receive, and resource
accesses. The developer then incorporates all the
instrumentation requirements into the software design by
identifying the corresponding instrumentation points.
During implementation, the developer inserts traces at
each event point, both manually and by activating (a
subset of) permanent traces. The developer should plan to
incrementally introduce the traces through iterations to

minimize the impact of the instrumentation code on
software system operations. During this process, the
performance analyst should provide guidance to the
software developer on choosing the instrumentation
granularity (e.g., trace events e5 and e8, but not events
e6 and e7 in Figure 1).

Specification phase

Design phase

Implementation phase

Software
system

e1 e2

e4

e6

e5

e3

e7

e8

Figure 1: Trace design and implementation process

To illustrate this approach, let us look at an example.
In mobile devices, power consumption is an important
performance requirement [2]. The power consumption
varies depending on the hardware resources used.
During execution the software accesses hardware
resources. These accesses need to be monitored to
determine when a hardware resource is used, but should
all access events be traced or is it enough to just trace
enable and disable events? This question is best
answered by the performance analyst. During the
requirements phase the performance analyst identifies
the power consumption requirements of the hardware
resource. At design time, the performance analyst
identifies the hardware access events that need to be
traced to check the power consumption requirements.
When tracing hardware access events in a mobile device
it is very easy to violate real-time constraints and timing
requirements. In addition, driver software of each
hardware resource is unique. Instrumenting hardware
drivers requires a detailed understanding of the software,
and the developer is best suited for this task. During the
design and implementation phase the developer

incorporates the instrumentation requirements set by the
performance analyst into the driver software.

A good follow through by both the performance
analyst and software developer is essential for the success
of the proposed approach. For example: during the actual
performance profiling phase, the performance analyst
should relay any kind of trace instrumentation
inefficiencies to the developer. The developer in turn
should make the necessary instrumentation improvements
and provide the performance analyst with an updated
instrumented software build in a timely manner.

The approach to adding trace instrumentation for
performance profiling to the software development
process addresses the requirements outlined in section 2.1.
In addition, this approach would yield some other
incentives:

• allows for creating built in ‘standardized’
performance trace instrumentation, and

• provides formatting rules for performance event
data.

Smith and Williams [4] proposes a systematic
approach to software performance engineering. They
focus on estimating the performance of a software system
during each stage of the software development process.
Our approach attempts to optimize the performance
impact of trace instrumentation for performance profiling
by adding the software trace design and implementation
to the overall software development process.

3. Summary

In this position paper, we described an approach to

optimize trace instrumentation for performance profiling.
The approach involves adding trace instrumentation for
performance profiling to the software development
process. It draws upon the knowledge and skills software
developers and performance analysts bring with them —
using this knowledge to create efficient trace
instrumentation.

The proposed approach has the potential to decrease
the number of instrumentation points. It would yield
sufficient traces to profile the performance, yet it would
not trace more event data than needed. In addition, the
proposed approach would reduce the impact of trace
instrumentation on software system performance.

4. References

[1] D. Konkin, G. Oster, R. Bunt, Exploiting Software

Interfaces for Performance Measurement, Proceedings of
the 1st International Workshop on Software and
Performance, 1998, pp. 208–218.

[2] R. Lencevicius, E. Metz, A. Ran, Software Validation using
Power Profiles, Proceedings of the 20th IASTED

International Conference on Applied Informatics (AI),
2002, pp. 143–148.

[3] J. Moe, D. Carr, Understanding Distributed Systems via
Execution Trace Data, 9th International Workshop on
Program Comprehension, 2001, pp. 60–67.

[4] C. U. Smith and L. Williams, Performance solutions: A
practical guide to creating responsive, scalable solutions,
Addison-Wesley, 2002.

[5] D. Stewart, Measuring Execution Time and Real-Time
Performance, Embedded Systems Conference (ESC),
2001.

[6] J. Vetter, D. Reed, Managing Performance Analysis with
Dynamic Statistical Projection Pursuit, Proceedings of the
1999 ACM/IEEE Conference on Supercomputing, 1999.

	Introduction
	Performance profiling
	Minimizing Performance Impact
	Efficient Instrumentation

	Summary
	References

