Generating Test Data for Dynamically Discovering Likely
Program Invariants

Neelam Gupta

Department of Computer Science
The University of Arizona
Tucson, AZ 85721
ngupta@cs.arizona.edu

Abstract

Dynamic detection of program invariants is emerg-
ing as an important research area with many challeng-
ing problems. As with any dynamic approach, the accu-
racy of dynamic discovery of likely program invariants
depends on the quality of test cases used to detect in-
variants. Therefore, generating suitable test cases that
support accurate detection of program invariants is cru-
cial to the dynamic approach for invariant detection.

In this paper, we explore new directions in using the
existing test data generation techniques to improve the
accuracy of dynamically detected program invariants.
First we discuss the augmentation of existing test suites
to improve the accuracy of dynamically discovered in-
variants. The augmentation of the test suite may be
done prior to running the dynamic analysis if the vari-
ables and expressions whose values will be monitored at
runtime are known in advance. On the other hand, the
dynamic analysis may be run first using an available
test suite to obtain an initial guess of program invari-
ants. These guessed invariants may then be used to gen-
erate test cases to augment the test suite. We also pro-
pose the use of existing test data generation techniques
in improving the accuracy of invariants guessed using
an already available test suite.

Keywords - Test data generation, path testing, pro-
gram invariants, dynamic analysis, execution traces.

1 Introduction

Dynamic detection of program invariants is an
emerging area of research with many challenging
problems [3, 4]. The accuracy of dynamically dis-
covered invariants critically depends upon the test

suite used for detection of invariants. One param-
eter of the test suite that can be loosely related to
the accuracy of dynamic detection of invariants is
the size of the test suite. However, not all large
test suites can be expected to be equally effective
in accurate detection of invariants due to varying
degree of structural coverage obtained. Thus, it
is crucial to conduct research on what properties
make a test suite suitable for dynamic invariant de-
tection.

In prior work [3, 4], randomly generated and
grammar generated test suites have been used
for invariant detection. Randomly generated test
suites have poor coverage and are most effec-
tive at highly peculiar bugs [10]. In the experi-
ments reported in [4], the randomly generated test
suites failed to execute many portions of a pro-
gram. These randomly generated test suites did
not detect many of the invariants that were de-
tected using hand-crafted input cases. The experi-
ments using randomly generated test suites from a
grammar describing valid inputs detected more in-
variants than completely randomly generated test
suites. However, generating test cases using gram-
mar rules is a black box approach to test case gen-
eration and in general can fail to cover a significant
part of the implementation.

In this paper we explore new research directions
in generation of test cases to support dynamic in-
variant detection. We discuss the augmentation
of existing test suites to improve the accuracy of
dynamically discovered invariants. The augmen-
tation of the test suite may be done prior to run-
ning the dynamic analysis if the variables and ex-
pressions, whose values will be monitored at run-
time, are known in advance. On the other hand, the

dynamic analysis may be run first using an avail-
able test suite to guess program invariants. These
guessed invariants may then be used to generate
test cases to augment the test suite. We also pro-
pose the use of existing test data generation tech-
niques to improve the accuracy of dynamically dis-
covered likely invariants.

The organization of the paper is as follows. We
discuss the background work in test data genera-
tion and dynamic detection of program invariants
in section 2. In section 3, we propose new research
directions to improve the accuracy of dynamically
discovered invariants. Finally, we summarize the
contributions of this paper and our future work.

2 Background

Test Data Generation Problem We consider the
problem of generating input data that forces execu-
tion through a given path in a program. Symbolic
evaluation [1, 2] and program execution based ap-
proaches [7, 8, 5, 11] have been proposed for gener-
ating test data for a given path in a program. The
problem of test data generation for a given path is
defined as follows.

Problem Statement: Given a program path P which
is traversed for certain evaluations (true or false)
of branch predicates BPy, BP, - -- BP, along P,
generate a program input I = (i1,142...,%,) in the
input domain of the program that causes the branch
predicates to evaluate such that P is traversed.

The selection of paths for which the test input
needs to be generated depends upon the testing
strategy. For example, if the testing strategy is to
ensure coverage of all branches in the program, the
test paths are selected so that each branch is exer-
cised by at least one test path among those selected.

Dynamic Invariant Detection. We consider the
approach to dynamic discovery of invariants pre-
sented in [3, 4]. In this approach the invariants
are dynamically detected from program traces that
capture the variable values at program points of
interest. The user runs the target program over a
test suite to create execution traces of the program.
An invariant detector determines which properties
hold over both explicit variables and other expres-
sions. Variable and expressions for which these
properties hold over the traces, and also satisfy
other tests such as being statistically justified, not
being over unrelated variables and not being im-
plied by other invariants, are reported as likely in-

variants. The set of likely invariants reported de-
pends on the test suite used to discover invariants.

3 Test Data Generation for Dynamic
Invariant Detection

In this paper we explore the relationship be-
tween the test data generation problem and dy-
namic discovery of program invariants. First we
illustrate that the test suites satisfying the state-
ment and branch coverage criteria may not be good
enough for accurate detection of program invari-
ants. We propose new approaches to to augment
these test suites with additional test cases that can
help in improving the accuracy of detected invari-
ants. Second we illustrate the use of test data gen-
eration techniques in improving the accuracy of
detected invariants.

3.1 Augmenting a Test Suite for Invariant De-
tection

We first illustrate the limitations of using ex-
isting structural coverage test suites for dynamic
discovery of program invariants and propose how
these test suites may be augmented with additional
test cases to overcome these limitations.

0: int funcEx(intX,y)

1:

P1: if (x > 0)

2: a=3;

3: Cc=6;

4: else

5: a=3;

6: c=9;

7: endif

P2: if (y > 0)

8: b=4;

9: d=2;

10: else

11: b=3;

12: d=1;

13: endif

14: /* Monitored Property: (a*b == c*d) */
15: printf(” a*b == c*d”)
16:

17: }

Figure 1. An example code segment

Let us consider the code segment shown in Fig-
ure 1. Let the expression (a*b == c*d) in line 15 rep-
resent a property to be monitored during every ex-

ecution of this code segment. The code segment
has been instrumented so that the value of this ex-
pression is written into every execution trace for
this code segment. Let us say the test suite 7 con-
sists of the following two input cases.

T = {(.’E =95,y = 2)5 (.’L' =-9%,y= _1)}

Note that executing the code segment in Figure
1 with test cases in T} executes every statement in
this code segment. In addition, every branch out-
come of the two branch predicates P1 and P2 are
executed by this test suite. Also note that every
definition-use pair in this code segment is also ex-
ercised by this test suite. The property tested in
line 15 will also hold for this test suite 7;. But it
is easy to see that this property does not hold for
the test case (z = 5,y = —1). This simple example
illustrates that code coverage (each statement ex-
ecuted at least once by some test case) and even
branch coverage (each branch outcome is evalu-
ated at least once by some test case) are very weak
criteria for the test suite to be adequate for dynamic
invariant detection.

However, the above example provides insight
into the limitations of using coverage based test
suites for detecting invariant properties at differ-
ent points in the programs. These test suites are
designed to test structural coverage of the program
and may not contain test cases that are specifically
helpful in verification of properties being moni-
tored for invariant discovery. What is needed is
the augmentation of these test suites with test cases
specific to the properties being monitored.

In the above example, we need test cases for
all possible combinations of branch outcomes by
which the program execution can reach the criti-
cal point where the property of interest is being
monitored. But in general, the number of paths
reaching the critical point may be unbounded due
to the presence of loops. So the crucial problem is
how to identify the important paths reaching the criti-
cal point so that augmenting the structural coverage
test suites with the test cases for these paths gives
higher confidence in the value of the property be-
ing monitored during execution.

One approach we propose is to select the paths
that exercise different definition-use pairs that are
live at the critical point where the invariant prop-
erty is being monitored. However, in order to com-
pute the live definition-use pairs at the critical point,
we need to know the expression or the variable that
is being monitored at this point. If the explicit vari-
ables and other expressions whose properties are
collected in the executions traces are available in

advance, then the live definition-use pairs for these
variables and expressions can be computed.

On the other hand, if the explicit variables and
expressions whose properties are to be monitored
are not available in advance, then runtime analy-
sis [3, 4] can be used to discover likely invariants
with an existing structural coverage test suite. The
live definition-use pairs for the discovered likely in-
variants (at the relevant program points) can then
be used to guide the selection of paths important
for verification of these discovered invariants. The
test inputs for these paths can be generated and
the structural coverage test suite can then be aug-
mented with these test inputs. Now if the run-
time analysis [3, 4] is done with the augmented test
suite, it is expected that some of the spurious in-
variants that were reported earlier with the struc-
tural coverage test suite may not be reported any
more. This is because the augmented test suite
contains test cases specific to verification of those
likely invariant properties that were reported ear-
lier by the structural coverage test suite. The sub-
set of the properties reported (from among those
reported with the coverage test suite) by the aug-
mented test suite is expected to be more accurate
than the original set of likely invariants reported
with the structural coverage test suite. We are cur-
rently exploring the effectiveness of this approach
in our ongoing research. In the next section, we
illustrate a different dimension of the relationship
between the test data generation problem and the
accuracy of reported program invariants.

3.2 Formulating Invariant Detection Problem
as a Test Data Generation Problem

We propose to formulate the invariant detection
problem as a data generation problem to improve
the accuracy of dynamically discovered invariants.
We illustrate this with the example in Figure 1. Let
us replace line 15 in the code segment shown in
Figure 1 by lines P3, 15, 16 and 17 shown in Fig-
ure 2.

We call the new branch predicate P3 introduced
in the code segment in Figure 3 as the invariant
checking predicate. Let us consider the problem
of generating test data to execute the branch de-
noted by the line P3 followed by line 17, i.e., the
false branch outcome of predicate P3. Now, if test
data can be generated for the false branch of an invari-
ant checking predicate, then the corresponding property
does not hold irrespective of the information collected
from the execution traces using the already available test

0: int funcEx(intXx,y)

1:

P1: if (x > 0)
7: endif
P2: if (y > 0)
13: endif

14: /* Monitored Property: (a*b == c*d) */
P3: if (a*b == c*d)

15: printf(“Property holds”)
16: else

17: printf(“Not an invariant”)
18: :

19: }

Figure 2. Modified example code segment

suites. As can be seen for the example in Figure 2,
test data for the false outcome of P3 will be easily
generated by program execution based techniques
in[9, 12].

The above example illustrates an important ap-
plication of the test data generation techniques in
support of dynamic invariant detection. If test data
can be generated to exercise the false branch of an
invariant checking predicate, then the correspond-
ing guessed invariant must be discarded. This is
because this test input serves as a counterexample
to this guessed invariant. Although, in general it
is undecidable whether there exists an input to ex-
ecute a given path in an arbitrary program, tech-
niques [1, 2, 7, 8, 5, 11] have been developed for
automatic generation of test data for a given path
in a program. Different test data generation tech-
niques have different strengths and the difficulty of
test data generation for a path depends on the com-
plexity and interdependence of branch predicates
along the path. However, whenever test data gen-
eration techniques can generate an input exercising
the false branch of an invariant checking predicate,
the accuracy of the reported invariants can be sig-
nificantly improved.

4 Conclusions and Future Work

In this paper we have provided insight into the
relationship between test cases used for detecting
invariants and the accuracy of invariant proper-
ties thus detected. We have proposed approaches
for augmenting test suites for accurate detection of
invariants. We are currently exploring these ap-

proaches for their effectiveness in accurate discov-
ery of program invariants. We have also proposed
the use of test data generation techniques to im-
prove the accuracy of dynamically discovered pro-
gram invariants.

References

[1] L.A. Clarke, “A System to Generate Test Data and
Symbolically Execute Programs,” IEEE Transactions
on Software Engineering, Vol. SE-2, No. 3, pages 215-
222, September 1976.

[2] R.A. DeMillo and A.J. Offutt, “Constraint-based Au-
tomatic Test Data Generation,” IEEE Transactions on
Software Engineering, Vol. 17, No. 9, pages 900-910,
September 1991.

[3] M. D. Ernst,]J. Cockrell, W. G. Griswold, and D.
Notkin, “Dynamically discovering likely program
invariants to support program evolution,” IEEE
Transactions on Software Engineering, vol. 27, no. 2,
Feb. 2001, pp. 1-25.

[4] M. D. Ernst. “Dynamically Discovering Likely Pro-
gram Invariants,” Ph.D. dissertation, University of
Washington Department of Computer Science and
Engineering, (Seattle, Washington), Aug. 2000.

[5] M.J. Gallagher and V.L. Narsimhan, “ADTEST: A
Test Data Generation Suite for Ada Software Sys-
tems,” IEEE Transactions on Software Engineering, Vol.
23, No. 8, pages 473-484, August 1997.

[6] A. Gotlieb, B. Botella, and M. Rueher, “Automatic
Test Data Generation using Constraint Solving Tech-
niques,” International Symposium on Software Testing
and Analysis, 1998.

[7] N.Gupta, A. P. Mathur, and M. L. Soffa, “Automated
Test Data Generation using An Iterative Relaxation
Method” ACM SIGSOFT Sixth International Sympo-
sium on Foundations of Software Engineering (FSE-6),
pages 231-244, Orlando, Florida, November 1998.

[8] N. Gupta, A. P. Mathur, and M. L. Soffa, “UNA
Based Iterative Test Data Generation and its Evalua-
tion,” 14th IEEE International Conference on Automated
Software Engineering(ASE’99), pages 224-232, Cocoa
Beach, Florida, October 1999.

[9] N. Gupta, A. P. Mathur, M. L. Soffa, “Generating
Test Data for Branch Coverage”, 15th IEEE Interna-
tional Conference on Automated Software Engineering
(ASE’00), Grenoble, France, September 2000.

[10] D. Hamlet, “Random Testing,” Encyclopedia of Soft-
ware Engg., 1994.

[11] B. Korel, “Automated Software Test Data Genera-
tion,” IEEE Transactions on Software Engineering, Vol.
16, No. 8, pages 870-879, August 1990.

[12] B. Korel, A Dynamic Approach of Test Data Gen-
eration. In Conference on Software Maintenance, pages
311-317, San Diego, CA, November 1990.

