
Scripting Runtime Dynamic Analyses

Jonathan E. Cook Abdulmalik Al-Gahmi Shalini Devi Navin Vedagiri
Department of Computer Science

New Mexico State University
Las Cruces, NM 88003 USA

jcook@cs.nmsu.edu

Abstract

Large scale system development and maintenance
projects often need to build scaffolding—tools that help
build the target system—that is customized to the
project. For some classes of tools, including dynamic
analysis, the cost barrier is too high to consider imple-
menting customized support that might be beneficial to
the project, and thus the project makes do with what-
ever off-the-shelf support is available.

This paper presents ideas and prototypes in offer-
ing generic support for high-level, flexible, and pro-
grammable introspection of software systems. Our hy-
pothesis is that “quick-and-dirty” scripting languages
such as Tcl/Tk and Python can be effectively used to
create ad-hoc dynamic analyses that help system engi-
neers better understand, develop, and maintain their
system.

1. Introduction

Many system development and maintenance activi-
ties need or can benefit from introspective and possibly
even manipulative capabilities in a running system. By
this we mean the ability to peer into a running system
and observe it, and even manipulate it to some extent.
But typical mechanisms for introspection are hard to
use, involve a great deal of low-level programming, and
require expert programming to be used correctly. Be-
cause of this, the effort in building introspection tools
is very high, and projects are often prevented from
building application-specific tools or rapidly prototyp-
ing new general-purpose tools.

It would seem natural to provide some generic and
easy-to-use mechanism to support these needs, and
that is precisely the point of the ideas described here.

Our vision is to provide a flexible, easy-to-use mech-
anism for introspection that allows not just complex

tools to be developed but allows the application pro-
grammers to easily build ad-hoc tools that meet a spe-
cific need at a specific time. Rather than try to pre-
define the capabilities we think might be needed, a
better approach to achieve this end is to re-use one of
the many scripting languages that are available.

Scripting languages allow extremely rapid develop-
ment of functionality, at the the cost of speed since
they are interpreted languages. But since they are full
programming languages, there is no limit to the type
of tools that might be built using them. While they do
have some downsides, they seem ideal for building the
scaffolding-type of software tools that must be built to
help manage, test, observe, and maintain a large pro-
duction software system.

In our initial prototypes we chose the Tcl/Tk script-
ing language because of its clean design, ease of
integration with traditional programming languages
(C/C++), and GUI capabilities. However, the prin-
ciples underlying our approach can be applied using
other languages.

2. Framework

Runtime issues in dynamic analysis have always had
to balance the low-level issues of how to instrument the
system under observation with the high-level issues of
how to make the customization of analysis accessible
to the user. A variety of solutions have been proposed
and implemented, from special purpose systems that
only allow a specific class of analyses to be performed,
to special languages (e.g., event processing languages
such as [1]) that can be used to specify the desired
analysis.

All of these have their place; however, eventually
one must consider that the scope of desired dynamic
analyses is, in the most inclusive sense, general com-
putation. Thus, why not enable general computational



System Under Observation

interface + control

probes

Scripted Analysis

Figure 1. Scripted dynamic analysis architec-
ture.

environments for dynamic analysis? Furthermore, can
we make this programming of dynamic analyses more
accessible by using high-level programming ideas?

Figure 1 shows how these ideas might fit together.
The system under observation should have some mech-
anism, or at least the potential to insert a mechanism,
for observing its behavior. The framework implemen-
tor can do the hard task of building the probes on top
of this mechanism so that dynamic analysis tools can
be built. To hide this complexity, the probe points
and information they provide are made available to a
scripting language engine, so that a specific analysis
can be written in a scripting language, without needing
to reach down into the details of the instrumentation.

Our initial prototypes, described in Sections 4-
r̃efsec:java, have focused on method/function invoca-
tion interceptions, but our idea for the basic architec-
ture is to enable script-level access to more types of
instrumentation probes.

3. Tcl/Tk and other scripting languages

Tcl (Tool Command Language [8], pronounced
“tickle”) is a programming language in the class known
as “scripting” languages. Newer scripting languages
such as Tcl, Perl, Python, and PHP are much more ad-
vanced than the old shell scripting languages, yet they
retain the ease of use and the capability for extremely
rapid development of advanced functionality. Tcl and
most other scripting languages can be both easily ex-
ecuted from C/C++ and extended with custom com-
mands written in C/C++. It is rather misleading to
call these languages “scripting” languages, in that they
are very powerful interpreted languages, with built-in
data structures and functional-style programming lan-
guage constructs. Modules provide canned support for

web services, GUI interfaces, email, ftp, encryption,
and many other high-level abstractions.

The upside of scripting languages is that one can
create a great deal of functionality with relatively little
effort, and they are robust enough to be relied upon.
Indeed they can be found running much of the web
services we use every day, are used extensively as the
foundations of test harnesses, rapid prototyping envi-
ronments, and many other real world situations.

The downside to most scripting languages is that
they do not have a formal semantics but rather an op-
erational one, which can change based on the version
of the interpreter one is running! They are targeted
towards achieving practical usefulness, not theoretical
semantic correctness. However, compiled languages of-
ten reveal similar ambiguities [4]. Scripting languages
are also quite a bit computationally slower than sys-
tem programming languages, and their typically weak
typing is sometimes detrimental.

4. Realization in CORBA

The CORBA (Common Object Request Broker Ar-
chitecture) standard has defined cross-platform remote
object invocation for ten years [7]. From early on
CORBA had a proposed specification for object request
interceptors, but it was incomplete and optional. Co-
incident with version 2.4.2 and later versions, a new in-
terceptor specification was drafted, known as Portable
Interceptors [2]. With the Portable Interceptor stan-
dard, it is now possible to create debugging, monitor-
ing, and other introspection tools that will interoperate
with most vendor ORBs.

In our work, we built an intermediate interceptor
layer that took each interception point and invoked
a mirror in the scripting language Tcl/Tk. Although
not completely invisible to the application developer—
some CORBA implementations may require rebuilding
the application with different options—there is no low-
level programming needed, and CORBA analysis tools
that use interception-based data can be written com-
pletely in an easy-to-use scripting language.

CORBA Portable Interceptors are ORB-level inter-
ceptors that act upon method invocation requests and
replies. On the server side, the most basic interception
points are “receive request” and “send reply”. Thus,
CORBA interception points naturally give the analy-
sis tool access to the pre- and post-execution points of
an invocation. Also note that the interception points
are generic for the ORB rather than specific to the ob-
ject and method being invoked. Our interface makes
available to the scripting language an object ID, the
method name, and the values and types of the param-



eters and return values. Thus, at the script level, the
analysis can perform computations specific to the ob-
ject and/or method, by inspecting the meta-data.

5. Realization in Unix shared libraries

Shared or dynamic link libraries offer an interest-
ing deployment opportunity for our ideas, because they
are so widely used and their components are relatively
simple (C functions). Nevertheless, the environment is
one where very little meta-information is available, and
with almost no runtime meta-programming ability. It
has potential access, though, because we can modify
the dynamic loading process to allow the possibility of
binding a function call not to the original target func-
tion but to whatever we want, namely a probe point.

Once we have the call intercepted, it is “only” a
matter of programming to implement the relay of the
function call to the scripted dynamic analysis, and to
ensure that the original function is still called, to effect
the correct execution of the program. While not trivial,
it is possible. Our work is currently in the context
of the ELF object and library file formats [6], and in
the Gnu shared library loader [5] as used in the Linux
operating system.

When creating an object file which has calls to func-
tions located in shared libraries, the compiler produces
a call that uses table-based indirection (we will call
them “jump tables”). In a somewhat simplified sce-
nario, this table entry initially points not to the actual
function (since its location is not known) but to the dy-
namic loader. Thus the first call invokes the dynamic
loader, which will look up the function (by name), load
the library if necessary, figure out the actual address
of the function being called, overwrite the table entry
with the actual function address, and then jump to the
function. All subsequent calls from that call site simply
pay a tiny (one instruction) penalty of a table lookup.

Although a static name interception capability al-
ready existed with the LD PRELOAD environment
variable, we have modified the Gnu dynamic loader to
enable dynamic control of the name resolution process,
for this and other work we are doing. The dynamic
control allows runtime remapping of names to alter-
native names, on a per-link-object basis rather than
at a global level. This functionality gives us the basic
interception capability.

To avoid the necessity of low-level programming of
the probes, we created a wrapper generator that takes
function prototype definitions and generates probe
wrappers that the dynamic linker can safely redirect
the execution to. These wrappers also instantiate the
argument and return data into Tcl-accessible data, and

Figure 2. Memory usage analysis in the
shared library framework.

invoke Tcl routines before and after the original func-
tion is invoked, so that pre- and post-execution analysis
can be performed.

Thus, a dynamic analysis of an existing system can
be written completely in Tcl, except for the function
prototypes needed to generate the wrappers. Figure 2
shows an simple memory allocation analysis of an ex-
isting binary executable (Ghostview) that was written
purely in Tcl/Tk.

An interesting difference between the interception
points in this framework and in the previous one
(CORBA) is that the C shared library interception
points are specific to each function that is being in-
tercepted. At the scripting level, a procedure must be
defined for each pre- and post-interception point, for
each function being intercepted. This is quite differ-
ent than the generic interception point offered by the
CORBA. The tradeoff between the two is that specific
interception points offer more direct access to perform
very specific ad-hoc analyses, while general needs such
as event logging are much easier with the generic inter-
ception points (and the appropriate meta-data).

We have devised a mechanism for generic intercep-
tion points in the shared library framework, but are
still in the process of implementing it, and need to do
more testing and make more meta-data available to
define the actual interception.

6. Realization in Java

In both the CORBA and shared library environ-
ments we were dealing with compiled programs, and
were able to utilize API’s for the (compiled) interpreter
of a scripting language (Tcl). In these settings, there
is a clear distinction between the machine-code rep-



resentation of the system under observation and the
interpreted language that the dynamic analysis tool is
written in.

Java, however, presents an interesting case in that
it is already an interpreted language, at least at the
bytecode level. One might think that the Java envi-
ronment, then, does not really benefit from having dy-
namic analysis tools able to be written in a scripting
language. However, we feel that Java is a sufficiently
complex language to warrant exploration of making dy-
namic analyses easier to program.

While Java can access native code resources, and
thus could be integrated with external interpreters for
scripting languages, there has been enough interest in
the combination of Java and scripting languages that
open source versions of Java-based interpreters exist
for such popular languages as Tcl (Jacl, or Java Tcl)
and Python (Jython). This means that we can have the
scripted analysis running within the Java environment,
which reduces complexity considerably, and future en-
abling of other probe points should be easier.

To create the interface between the system under
observation with the scripting language, we have built
a class wrapper generator which uses the Byte Code
Engineering Library (BCEL [3]) to generate a wrap-
per for the public interface methods of a class. In
this wrapper we generate calls to the scripting anal-
ysis program, with the appropriate data. Thus, the
only code needed to be written by the developer inter-
ested in some ad-hoc dynamic analysis is the Tcl (Jacl)
or Python (Jython) code. As with the C library frame-
work, we offer pre- and post-execution points around
the method call, and the interception points are specific
rather than generic.

7. Conclusion

It is our hypothesis that developers would more of-
ten perform ad-hoc dynamic analyses on the system
they are building or maintaining if the cost of creating
these ad-hoc analyses was lower than it currently is. To
this end, we are experimenting with enabling the analy-
ses to be written in high level scripting languages, with
the low-level details hidden and not needing to be the
concern of the developers. We have built initial frame-
works in CORBA using the Portable Interceptor stan-
dard, in C using the dynamic linking phase of library
code access, and in Java using the BCEL toolset to ac-
cess class bytecode. Each of these is centered around
method or function call interception, but embody two
different styles of access. The CORBA framework en-
ables generic interception points, where all method
calls fire the same interception points; while the shared

library and Java frameworks enable function/method-
specific interception points. We plan to further en-
hance these frameworks and continue to explore the
bounds of usefulness for scripting languages in dynamic
analysis.

Acknowledgments

This work was supported in part by the National Sci-
ence Foundation under grants EIA-9810732 and EIA-
0220590. The content of the information does not nec-
essarily reflect the position or the policy of the Govern-
ment and no official endorsement should be inferred.

References

[1] M. Auguston, A. Gates, and M. Lujan. Defining a pro-
gram Behavior Model for Dynamic Analyzers. In Pro-
ceedings of the 9th International Conference on Soft-
ware Engineering and Knowledge Engineering, pages
257–262. IEEE Computer Society Press, June 1997.

[2] Interceptors Published Draft with CORBA 2.4+ Core
Chapters. Technical Report ptc/2001-03-04, Object
Management Group, 2001.

[3] M. Dahm. Byte Code Engineering Library. 2002.
http://jakarta.apache.org/bcel/.

[4] S. Eisenbach and C. Sadler. Changing Java Programs.
In Proceedings of the 2001 International Conference on
Software Maintenance, pages 479–487, Nov. 2001.

[5] Gnu C Library. 2002. http://www.gnu.org/.
[6] J. Levine. Linkers & Loaders. Morgan Kaufmann, San

Diego, CA, 2000.
[7] OMG. The Common Object Request Broker: Archi-

tecture and Specification, v2.4.2. Technical Report
formal/01-02-01, Object Management Group, 2001.

[8] J. Ousterhout. Tcl and the Tk Toolkit. Profes-
sional Computing Series. Addison-Wesley, Reading,
MA, 1994.


