Genetic Algorithms \&
 Genetic Programming

Senlin Liang
April 19, 2005

Outline

- Evolutionary Computation
- Basic GA
- An example: GABIL
- Genetic Programming
- Individual Learning \& Population Evolution

Evolutionary Computation

- Computational procedures patterned after biological evolution. Operators:
-Inherit
-Crossover
-Mutation
- Based on probability theory

GA(Fitness, Fitness_threshold, p, r, m)

- Initialize: $\mathrm{P} \leftarrow \mathrm{p}$ random hypotheses
- Evaluate: for each h in P , compute Fitness(h)
-While max(Fitness(h)) < Fitness_threshold
-Select: probabilistically select (1-r)*p members of P to add to Ps.
$\cdot \operatorname{Pr}\left(\mathrm{h}_{\mathrm{i}}\right)=\operatorname{Fitness}\left(\mathrm{h}_{\mathrm{i}}\right) / \operatorname{Sum}\left(\right.$ Fitness $\left.\left(\mathrm{h}_{\mathrm{k}}\right)\right)$
-Crossover: probabilistically select $\mathrm{r}^{*} \mathrm{p} / 2$ pairs of hypotheses from P. For each pair, $<\mathrm{h}_{1}, \mathrm{~h}_{2}>$, produce two offerspring by applying the Crossover operator. Add all offspring to Ps.

GA(Fitness, Fitness_threshold, p, r, m)
-Mutate: invert a randomly selected bit in m*p random members of Ps
-Update: $\mathrm{P} \leftarrow$ Ps.
-Evaluate: for each h in P , compute Fitness(h)

- Return the hypothesis from P that has the highest fitness

Representing Hypotheses

-Represent
(Outlook = Overcast OR Rain) AND (Wind = Strong)
$\begin{array}{ccc}\text { By } & \text { Outlook } & \text { Wind } \\ 011 & 10\end{array}$
-Represent
IF Wind = Strong THEN PlayTennis = yes
By Outlook Wind PlayTennis
$111 \quad 10 \quad 10$
Note: Outlook: Sunny, Overcast, Rain
Wind: Strong, Weak
PlayTennis: yes, no

Operators for GA

$\left.\begin{array}{llll} & \text { Initial strings } & \text { Crossover Mask offspring } \\ \text { Single-point } \\ \text { crossover }\end{array} \underline{\underline{11101001000}} \begin{array}{llll} & 00001010101\end{array}\right)$

Operators for GA

	Initial strings	Crossover Mask	offspring
Uniform crossover	$\begin{aligned} & \underline{11101010} \underline{0} 10 \underline{00} \\ & 0 \underline{000} \underline{0} \underline{0} \underline{010101} \end{aligned}$	10011010011	$\begin{array}{r} 10001000100 \\ \times 01101011001 \end{array}$
Point	11101001000	-	11101011000

mutation

Select most fit hypotheses

- Fitness proportionate selection
$-\operatorname{Pr}\left(\mathrm{h}_{\mathrm{i}}\right)=$ Fitness $\left(\mathrm{h}_{\mathrm{i}}\right) /$ Sum $\left(\right.$ Fitness $\left.\left(\mathrm{h}_{\mathrm{k}}\right)\right)$
-Can lead to crowding
-Alternatives
-Tournament selection
-Pick h1 and h2 randomly
-With probability p, select the more fit one from h1 and h2
-Rank selection
- Sort all hypotheses by their fitness
-Prob. of selection is propositional to its rank
-Complexity and generality

GABIL [Dejong et al. 1993]

- Learn disjunctive set of propositional rules
-Fitness:
- Fitness(h)=(correct(h))^2
-Representation:
-IF a1=T AND a2=F THEN c=T; IF a2=T THEN c=F
By: a1 a2 c a1 a2 c
$\begin{array}{llllll}10 & 01 & 1 & 11 & 10 & 0\end{array}$
-Genetic operators:
-Variable length rule set
-Well-formed bit string hypotheses

GABIL [Dejong et al. 1993]

- Crossover
- a1 a2 c a1 a2 c
-h1: $1\left[\begin{array}{llllll}0 & 01 & 1 & 11 & 1\end{array}\right] 0 \quad 0$
-h2: $0\left[\begin{array}{llllll}1 & 1\end{array}\right] 1 \quad 0 \quad 10$
-Choose crossover point for h 1 as $\langle 1,8\rangle$
\cdot Restrict the crossover points in h2: <1,3>,
$<1,8>,<6,8>$.
-If $<1,3>$,Results:
$-1\left[\begin{array}{lll}1 & 1\end{array}\right] 0 \quad 0$

GABIL Extensions

- Add new genetic operators, also applied probabilistically:
-AddAlternative: generalize constriant on a_{i} by changing a 0 to 1
-DropCondition: generalize constriant on a_{i} by changing every 0 to 1
-Add new fields to bit string:
- a1 a2 c a1 a2 c AA DC
- $\begin{array}{llllllll}01 & 11 & 0 & 10 & 01 & 0 & 1 & 0\end{array}$

GABIL Results

- Average performance on a set of 12 synthetic problems:
-GABIL without AA and DC operators: 92.1\% accuracy
-GABIL with AA and DC operators: 95.2\% accuracy
-Symbolic learning methods (C4.5, ID5R, AQ14) ranged from 91.2 to 96.6% accuracy

Schema

- How to characterize the evolution of population in GA?
-Schema: string containing 0,1*
$-0 * 1$, representing 001, 011
-Characterize population by number of instances representing each possible schema $-\mathrm{m}(\mathrm{s}, \mathrm{t})$: number of instances of schema s in population at time t

Schema

- $\mathrm{E}[\mathrm{m}(\mathrm{s}, \mathrm{t}+1)]>=$
$\mathrm{u}(\mathrm{s}, \mathrm{t}) * \mathrm{~m}(\mathrm{~s}, \mathrm{t}) / \mathrm{f}(\mathrm{t})$
$*\left(1-p_{c} * d(s) /(1-1)\right)$
* $\left(1-\mathrm{p}_{\mathrm{m}}\right)^{\wedge}(\mathrm{o}(\mathrm{s}))$
- $\mathrm{f}(\mathrm{t})$: average fitness of population at time t
$\cdot u(\mathrm{~s}, \mathrm{t})$: average fitness of schema s at time t
${ }^{-} \mathrm{p}_{\mathrm{c}}$: prob. of single point crossover operator
$\cdot \mathrm{p}_{\mathrm{m}}$: prob. of mutation operator
$\cdot 1$: length of single bit strings
\bullet - (s) : \#of defined bits in schema s
-d(s): distance between leftmost and rightmost
defined bits in schema s

Genetic Programming

- population of programs represented by trees: $\sin (x)+$ squareRoot(square $(x)+y)$

Crossover

Biological Evolution

-Lamark ($19^{\text {th }}$ century)
-Individual genetic makeup was altered by lifetime experience
-Current evidence contradicts this view
-But it improve efficiency in GP
-What is the impact of individual learning on population evolution?

Baldwin Effect

- Assume:
-Individual learning has no direct effect on individual DNA
-Then:
-Ability of individuals to learn will support more diverse gene pool
-More diverse gene pool will support faster evolution of the gene pool
- So, individual learning indirectly increases the evolution rate

Baldwin Effect

-Plausible example:

-New predator appears in environment
-Individuals who can learn (to avoid it) will be selected
-Increase in learning individuals will support more diverse gene pool
-Resulting in faster evolution
-Possibly resulting in new non-learned (or genetic) traits such as instinctive fear of the predator

Experiments on Baldwin Effect [Hinton \& Nowlan, 1987]

- Evolve simple neural networks:
- Some networks weights fixed during lifetime, while others trainable
- Genetic makeup determines which are fixed, and their weight values
- Results:
- With no individual learning, population failed to improve overtime
- With individual learning
- Early generations: population contained many individuals with many trainable weights
- Later generations: higher fitness, while number of trainable weights decreased

Usage

- huge search space
- avoid the problem of local minimal, so after several generations, the solution is very near to the optimal one.

Acknowledgement

-Based on Tom M. Mitchell’s slides
-From "Machine Learning", Tom M. Mitchell

