Genetic Algorithms & Genetic Programming

Senlin Liang April 19, 2005

Outline

- Evolutionary Computation
- Basic GA
- An example: GABIL
- Genetic Programming
- Individual Learning & Population Evolution

Evolutionary Computation

• Computational procedures patterned after biological evolution. Operators:

- -Inherit
- -Crossover
- -Mutation
- Based on probability theory

GA(Fitness, Fitness_threshold, p, r, m)

-Mutate: invert a randomly selected bit in m*p random members of Ps

-Update: $P \leftarrow Ps$.

-Evaluate: for each h in P, compute Fitness(h)

• Return the hypothesis from P that has the highest fitness

Representing Hypotheses •Represent (Outlook = Overcast OR Rain) AND (Wind = Strong) By Outlook Wind 011 10 •Represent IF Wind = Strong THEN PlayTennis = yes By Outlook Wind PlayTennis 111 10 10 Note: Outlook: Sunny, Overcast, Rain Wind: Strong, Weak PlayTennis: yes, no

Schema

• How to characterize the evolution of population in GA?

–Schema: string containing 0,1 *

-0*1, representing 001, 011

•Characterize population by number of instances representing each possible schema

-m(s, t): number of instances of schema s in population at time t

Schema

Biological Evolution

•Lamark (19th century)

–Individual genetic makeup was altered by lifetime experience

-Current evidence contradicts this view

-But it improve efficiency in GP

•What is the impact of individual learning on population evolution?

Baldwin Effect

•Assume:

–Individual learning has no direct effect on individual DNA

•Then:

-Ability of individuals to learn will support more diverse gene pool

-More diverse gene pool will support faster evolution of the gene pool

•So, individual learning indirectly increases the evolution rate

Baldwin Effect

•Plausible example:

-New predator appears in environment

-Individuals who can learn (to avoid it) will be selected

-Increase in learning individuals will support more diverse gene pool

-Resulting in faster evolution

–Possibly resulting in new non-learned (or genetic) traits such as instinctive fear of the predator

Experiments on Baldwin Effect [Hinton & Nowlan, 1987]

- Evolve simple neural networks:
 - Some networks weights fixed during lifetime, while others trainable

Genetic makeup determines which are fixed, and their weight values

• Results:

- With no individual learning, population failed to improve overtime
- With individual learning
 - Early generations: population contained many individuals with many trainable weights
 - Later generations: higher fitness, while number of trainable weights decreased

Usage

• huge search space

• avoid the problem of local minimal, so after several generations, the solution is very near to the optimal one.

Acknowledgement

•Based on Tom M. Mitchell's slides

•From "Machine Learning", Tom M. Mitchell