
1

Genetic Algorithms
&

Genetic Programming

Senlin Liang
April 19, 2005

Outline

• Evolutionary Computation
• Basic GA
• An example: GABIL
• Genetic Programming
• Individual Learning & Population Evolution

2

Evolutionary Computation

• Computational procedures patterned after
biological evolution. Operators:

–Inherit
–Crossover
–Mutation

• Based on probability theory

GA(Fitness, Fitness_threshold, p, r, m)
• Initialize: P p random hypotheses
• Evaluate: for each h in P, compute
Fitness(h)
•While max(Fitness(h)) < Fitness_threshold

–Select: probabilistically select (1-r)*p members
of P to add to Ps.

•Pr(hi) = Fitness(hi) /Sum(Fitness(hk))
–Crossover: probabilistically select r*p/2 pairs of
hypotheses from P. For each pair, <h1, h2>,
produce two offerspring by applying the
Crossover operator. Add all offspring to Ps.

3

GA(Fitness, Fitness_threshold, p, r, m)

–Mutate: invert a randomly selected bit in m*p
random members of Ps
–Update: P Ps.
–Evaluate: for each h in P, compute Fitness(h)

• Return the hypothesis from P that has the
highest fitness

Representing Hypotheses
•Represent

(Outlook = Overcast OR Rain) AND (Wind = Strong)
By Outlook Wind

011 10

•Represent
IF Wind = Strong THEN PlayTennis = yes
By Outlook Wind PlayTennis

111 10 10
Note: Outlook: Sunny, Overcast, Rain

Wind: Strong, Weak
PlayTennis: yes, no

4

Operators for GA

Initial strings Crossover Mask offspring
Single-point 11101001000 11111000000 11101010101
crossover 00001010101 00001001000

Two-point 11101001000 00111110000 11001011000
crossover 00001010101 00101000101

Operators for GA

Initial strings Crossover Mask offspring
Uniform 11101001000 10011010011 10001000100
crossover 00001010101 01101011001

Point 11101001000 11101011000
mutation

5

Select most fit hypotheses
• Fitness proportionate selection

–Pr(hi)=Fitness(hi)/Sum(Fitness(hk))
–Can lead to crowding

•Alternatives
–Tournament selection

•Pick h1 and h2 randomly
•With probability p, select the more fit one from h1 and h2

–Rank selection
•Sort all hypotheses by their fitness
•Prob. of selection is propositional to its rank

•Complexity and generality

GABIL [Dejong et al. 1993]
• Learn disjunctive set of propositional rules
•Fitness:

–Fitness(h)=(correct(h))^2
•Representation:

–IF a1=T AND a2=F THEN c=T; IF a2=T THEN c=F
By: a1 a2 c a1 a2 c

10 01 1 11 10 0

•Genetic operators:
–Variable length rule set
–Well-formed bit string hypotheses

6

GABIL [Dejong et al. 1993]
• Crossover

– a1 a2 c a1 a2 c
– h1: 1[0 01 1 11 1]0 0
– h2: 0[1 1]1 0 10 01 0

•Choose crossover point for h1 as <1,8>
•Restrict the crossover points in h2: <1,3>,
<1,8>,<6,8>.
•If <1,3>,Results:

– 1[1 1]0 0
– 0[0 01 1 11 1]1 0 10 01 0

GABIL Extensions
• Add new genetic operators, also applied
probabilistically:

–AddAlternative: generalize constriant on ai by
changing a 0 to 1
–DropCondition: generalize constriant on ai by
changing every 0 to 1

•Add new fields to bit string:
– a1 a2 c a1 a2 c AA DC
– 01 11 0 10 01 0 1 0

7

GABIL Results
• Average performance on a set of 12
synthetic problems:

–GABIL without AA and DC operators: 92.1%
accuracy
–GABIL with AA and DC operators: 95.2%
accuracy
–Symbolic learning methods (C4.5, ID5R, AQ14)
ranged from 91.2 to 96.6% accuracy

Schema
• How to characterize the evolution of
population in GA?

–Schema: string containing 0,1 *
–0*1, representing 001, 011

•Characterize population by number of
instances representing each possible schema

–m(s, t): number of instances of schema s in
population at time t

8

Schema
• E[m(s, t+1)] >=

u(s, t) * m(s, t) / f(t)
*(1 - pc * d(s)/(l -1))
*(1 – pm)^(o(s))

•f(t): average fitness of population at time t
•u(s,t): average fitness of schema s at time t
•pc: prob. of single point crossover operator
•pm: prob. of mutation operator
•l: length of single bit strings
•o(s): #of defined bits in schema s
•d(s): distance between leftmost and rightmost
defined bits in schema s

Genetic Programming
• population of programs represented by trees:

sin(x) + squareRoot(square(x) + y)

squareRoot

x

^

sin

+

+

x 2

y

Crossover

9

Biological Evolution

•Lamark (19th century)
–Individual genetic makeup was altered by
lifetime experience
–Current evidence contradicts this view
–But it improve efficiency in GP

•What is the impact of individual learning on
population evolution?

Baldwin Effect

•Assume:
–Individual learning has no direct effect on
individual DNA

•Then:
–Ability of individuals to learn will support more
diverse gene pool
–More diverse gene pool will support faster
evolution of the gene pool

•So, individual learning indirectly increases
the evolution rate

10

Baldwin Effect

•Plausible example:
–New predator appears in environment
–Individuals who can learn (to avoid it) will be selected
–Increase in learning individuals will support more
diverse gene pool
–Resulting in faster evolution
–Possibly resulting in new non-learned (or genetic) traits
such as instinctive fear of the predator

Experiments on Baldwin Effect
[Hinton & Nowlan, 1987]

• Evolve simple neural networks:
– Some networks weights fixed during lifetime, while others

trainable
– Genetic makeup determines which are fixed, and their

weight values
• Results:

– With no individual learning, population failed to improve
overtime

– With individual learning
• Early generations: population contained many individuals with many

trainable weights
• Later generations: higher fitness, while number of trainable weights

decreased

11

Usage
• huge search space
• avoid the problem of local minimal, so after
several generations, the solution is very near
to the optimal one.

Acknowledgement
•Based on Tom M. Mitchell’s slides
•From “Machine Learning”, Tom M. Mitchell

