
1

Neural Network Approach To Solving
The Traveling Salesman Problem

The Traveling Salesman

• The shortest route for a salesman to visit every
city, without stopping at the same city twice.

2

Methods

• Random
– An algorithm must be better than this to be

worthwhile
• Continuous Hopfield Network

– Fully-Connected
– Self-Associative

• Kohonen Self-Organizing Map
– Topologically Preserving

The Hopfield Net
• Created by James

Hopfield, originally
published in 1982.

• Self-Associative.
• Single-Layer Network.
• Is allowed to run until it

stabilizes.
• Training data represents

“attractor states”
• Output is binary.

3

A Simple Hopfield Example
Training Data

Network

Input Output 1 Output 2 Output 3

The Math

• One node per characteristic (pixels in our
example).

• The net is initialized (i.e. trained) to a
square weight matrix.

• The entry at position X,Y is the value of
the weight from X to Y.

• If for all nodes X and Y, entry X,Y = entry
Y,X implies that the net WILL stabilize.

4

The Math + Pascal

• Ti,j is the weight from node i to node j.
• Ti,j=0 if i=j.

s. example gin trainin ielement is wherej, equalnot does i If
1

s
i

s
j

M

s

s
i xxx ⋅∑

=
• Ti,j=
procedure assign_connection_weights;
var sum,i,j,s : integer;
begin for i:=1 to PATTERN_LENGTH do

for j:=1 to PATTERN_LENGTH do
if i = j
then t[i,j]:=0
else begin sum:=0;

for s:=1 to MAX_CLASSES do
sum:=sum + X[s,i] * X[s,j];

t[i,j]:=sum
end

end;

Running The Network

• We have a 2-dimensional array m.
• M(j,t) = the value of output j at time t.
• Initialize M(j,0) for all j to be our input.
• The weights in T are multiplied by the

corresponding values in M, summed
together. This is the new value stored in M.

• Remember: in basic Hopfield networks
values in M and T are binary.

5

More Pascal Psuedocode

const MAX_TIME = 10; {Maximum no. of time slots before
convergence}

var mu : array [1..MAX_TIME,1..PATTERN_LENGTH] of integer;

procedure copy_input_pattern;
var i : integer;
begin for i:=1 to PATTERN_LENGTH do

mu[0,i]:=input_pattern[i] {Each element +1 or -1}
end;

More Pascal Psuedocode
procedure iterate;
var tt : integer; {Time slot}

i,j : integer; {General loop variables}
sum : integer;

begin for tt:=1 to MAX_TIME do
begin for j:=1 to PATTERN_LENGTH do

begin sum:=0;
for i:=1 to PATTERN_LENGTH do
sum:=sum + t[i,j] * mu[tt-1,i];

{Now pass sum through the hard-limiter, so it is 1 or -1}
if sum > 0
then mu[tt,j]:=1
else mu[tt,j]:=-1

end
end

end;

6

Hopfield As Applied To The
Traveling Salesman

1. Initialize all units according to “The Willshaw
Initialization”

• Cities on opposite sides of the map should be
placed on opposite sides of the tour:

• Bias in terms of the ith city and the jth position, with
coordinates xi and yi

22)1(2
5.0
5.0)5.0()5.0())(cos(arctan),(−+−+== −

−
−

iin
j

x
y yxjibias

i

i πµ

Continuous Hopfield cont.

2. We will perform steps 3-7 until our net
stabilizes.

3. Perform steps 4-6 n2 times, where n is
the number of cities.

4. Choose a node at random.
5. Update M for this time step on the

selected unit.

7

Continuous Hopfield cont.

6. Apply the output function to see how
close this node is to a city, potentially
fixing its location.

7. Check for stabilization
• Use a square matrix

– Rows correspond to cites
– Columns correspond to a cities place in the

tour

Kohonen Self-Organizing Map
(SOM)

• Unsupervised learning artificial neural
network.

• Is known to perform well on classification
problems.

• Commonly used for:
– Visualization of statistical data, analysis of

electrical signals from the brain, cloud
classification from satellite, clinical voice
analysis, and automatic speech recognition.

8

Some Important Characteristics of
Self Organizing Maps

• Topography preserving.
– Keeps relationships with other nodes intact.
– Hopfield is fully connected.

• Similar to the brain in which neurons in the
same cluster have a stronger connection
than to those outside of the cluster.

• No other artificial neural network has this
property.

Finnish Phonetics

9

Network Structure

•Inputs are connected to all
neurons

•Neurons are NOT connected to
each other.

•Neurons DO contain
information pertinent to their
topographical location.

•Neurons, as usual, do contain
weights.

Training

• Initialize each nodes weights.
• Choose an element from the training set.
• Choose a Best Matching Unit (BMU).
• Find nodes close to the BMU and update

them to be more like the BMU.
• Repeat.

10

Initialization Code
class CNode
{
private:

//this node's weights
vector<double> m_dWeights;

//its position within the lattice
double m_dX, m_dY;

//the edges of this node's cell. Each node, when
//draw to the client
//area, is represented as a rectangular cell. The
//colour of the cell
//is set to the RGB value its weights represent.
int m_iLeft;
int m_iTop;
int m_iRight;
int m_iBottom;

public:
CNode(int lft, int rgt, int top, int bot, int

NumWeights):m_iLeft(lft), m_iRight(rgt),
m_iBottom(bot), m_iTop(top)
{
//initialize the weights to small random
//variables
for (int w=0; w<NumWeights; ++w)
{
m_dWeights.push_back(RandFloat());

}

//calculate the node's center
m_dX = m_iLeft + (double)(m_iRight -

m_iLeft)/2;
m_dY = m_iTop + (double)(m_iBottom -

m_iTop)/2;
}
...

};

Finding The BMU
• Euclidean distance is commonly

used (V is the current input vector
and W is the node’s weight vector)

public:
CNode(int lft, int rgt, int top, int bot, int NumWeights):m_iLeft(lft), m_iRight(rgt),

m_iBottom(bot), m_iTop(top)
{
//initialize the weights to small random variables
for (int w=0; w<NumWeights; ++w)
{
m_dWeights.push_back(RandFloat());

}

//calculate the node's center
m_dX = m_iLeft + (double)(m_iRight - m_iLeft)/2;
m_dY = m_iTop + (double)(m_iBottom - m_iTop)/2;

}
...

};

11

The BMU’s Neighborhood

• Look at all neurons within a certain radius of the BMU.
• The radius decreases the longer the net has been run.

Sigma-0 denotes the width of the net at
time t-0. Lambda is a time constant.

• Every node has its weight vector updating
according to the following equation.
– t : time step
– L(t): learning rate at time t
– W(t): weight at time t
– V: input vector
– theta(t): “proportionalizes” the effect of the

learning rate.
• W(t+1)=W(t)+L(t)(V(t)-W(t))

Updating The Nodes

12

Some code?
bool Csom::Epoch(const vector<vector<double> > &data)
{

//make sure the size of the input vector
//matches the size of each node's
//weight vector
if (data[0].size() != constSizeOfInputVector) return false;

//return if the training is complete
if (m_bDone) return true;

//enter the training loop
if (--m_iNumIterations > 0)

{
//chose a vector at random from the
//training set to be
//this time-step's input vector
int ThisVector = RandInt(0, data.size()-1);

//present the vector to each node and determine
//the BMU
m_pWinningNode =

FindBestMatchingNode(data[ThisVector]);
//calculate the width of the neighbourhood for this timestep

m_dNeighbourhoodRadius = m_dMapRadius * exp(-
(double)m_iIterationCount/m_dTimeConstant);

//Now to adjust the weight vector of the BMU and its
//neighbours. For each node calculate the m_dInfluence
//(Theta from equation 6 in the tutorial. If it is greater than
//zero adjust the node's weight accordingly

for (int n=0; n<m_SOM.size(); ++n)
{

//calculate the Euclidean distance (squared) to this node
//from the BMU
double DistToNodeSq = (m_pWinningNode->X()-

m_SOM[n].X()) * (m_pWinningNode->X()-m_SOM[n].X()) +
(m_pWinningNode->Y()-m_SOM[n].Y()) *
(m_pWinningNode->Y()-m_SOM[n].Y());

double WidthSq = m_dNeighbourhoodRadius *
m_dNeighbourhoodRadius;

//if within the neighbourhood adjust its weights
if (DistToNodeSq < (m_dNeighbourhoodRadius *

m_dNeighbourhoodRadius))
{

//calculate by how much its weights are adjusted
m_dInfluence = exp(-(DistToNodeSq) / (2*WidthSq));
m_SOM[n].AdjustWeights(data[ThisVector],

m_dLearningRate,
m_dInfluence);

}
}//next node

//reduce the learning rate
m_dLearningRate = constStartLearningRate * exp(-

(double)m_iIterationCount/m_iNumIterations);
++m_iIterationCount;

}
else { m_bDone = true; }
return true;

}

Applying Kohonen To The
Traveling Salesman

For setup:
• Place a “neuron” at each town on the map.
• Place a second set, of cardinality greater

than or equal to the number of towns, of
neurons in a circular formation around the
first set of neurons.
– These neurons will be stored in a 1-

dimensional array.

13

Running The Network

• Repeatedly present a town-neuron and it’s
weights to the other neurons.

• Find and update the BMU.
• Update all nodes around the BMU.
• Run until we converge to a path.

An Example Result

14

References
• Neural Network Approach To Solving The

Traveling Salesman Problem. Ralph Reilly and
Plamen Tchimev.

• The Self-Organizing Map. Teuvo Kohonen.
• Game Programming Gems – A Neural Network

Primer. Andre LaMothe.
• http://richardbowles.tripod.com/neural/hopfield/h

opfield.htm Richard Bowles
• http://www.ai-junkie.com/ann/som/som1.html
• http://www.comp.nus.edu.sg/~pris/AssociativeM

emory/HopfieldModel.html

