
1

Inductive Logic
Programming (ILP)

Brad Morgan
CS579
4-20-05

What is it?
Inductive Logic programming is a machine
learning technique which classifies data
through the use of logic programs.
ILP algorithms attempt to find a logic
program, usually a PROLOG program, that
will successfully classify all of it’s training
data given some background information
about the nature of the problem.

2

Intro to Logic Programming
Logic programming is non procedural.
In traditional programming we write an algorithm
that computes answers to questions.
When we write a logic program we are writing the
questions (and all of our assumptions) instead of
how to answer the questions.
A logic program interpreter attempts to find
possible answers to the questions.

Prolog
Prolog is the most popular logic interpreter.
Prolog programs are constructed from clauses.

Clause: “<head> :- <body>.”
Both Head and Body are composed of
literals/predicates. E.g. “parent(john, X).”
“john” and ‘X’ are atoms.
The head must be a single predicate but the body can be
a list of predicates.
A clause can be read as body implies head.
Either the head or the body can be omitted to indicate
queries, or facts respectively. Otherwise it is a rule.

3

Prolog
xor(X,Y) :- true(X), false(Y). //rule
xor(X,Y) :- true(Y), false(X). //rule
true(bit_1). //fact
xor(bit_1, bit_2). //fact
:- true(bit_2). //query
No //prolog output
:- xor(A,B). //query with vars
A = 0, B = 1; //output
A = 1, B = 0;

Notes: X,Y,A,B are variables. A comma means “and”.
Defining multiple rules for a predicate means “or”.

Chain of rules
witch(X) :- burns(X), female(X).

burns(X) :- wooden(X).
wooden(X) :- floats(X).

floats(X) :- sameweight(duck, X).

female(joan).
sameweight(duck,joan).

:- witch(joan).

Yes

Recursive rules
ancestor(A, X) :- parent(A, X). //base case

ancestor(A, X) :- parent(A, C), ancestor(C, X).

4

Inductive Logic Programming
In Inductive Logic Programming (ILP), we want to learn a
logic program that satisfies the training data. Then we can
use that logic program to classify future instances. This
program is called the “concept”
I will limit my discussion of ILP to problems where we are
classifying something as true or false.
Therefore our training data is a set of true examples, and a
set of false examples.
An ILP must also be given information about the nature of
the problem called background information before a logic
program can be generated.

ILP terminology
When a concept returns true for a set of arguments
we say the program covers those arguments.
A concept is sufficient if it covers all of the
positive examples in the training set.
A concept is necessary if it covers none of the
negative training examples.
If a concept is both sufficient and necessary, then
it is consistent.
The goal is to find a concept that is consistant.

5

Where π is a concept

Concepts
If a concept is sufficient but not necessary, then
we can make it cover fewer examples by
specializing it.
It the opposite is true then we generalize it to
make it accept more examples.
The most general concept can be written in
prolog by simply making it a fact for all possible
inputs. E.g. “is_carny(X) :- true.”
Similarly the most special prolog program is
“is_carny(X) :- false”

6

ILP Algorithm
Some possible ways to search for a concept are...
1. Start with the most general clause, and specialize until

the concept is consistent.
2. Start with the most specific and generalize until the

concept is consistent.
3. A common approach combines the two. Start with the

most general, specialize until the concept is necessary,
then generalize until the concept is more sufficient.
Repeat until the concept is consistant.

ILP Algorithm
There are three ways to generalize a concept.

1. Replace some terms with variables
2. Remove literals from the body of a clause
3. Add clause to the program.
Analogously there are three ways to specialize

1. Replace some variables with terms
2. Add literals to the body of a clause
3. Remove a clause.

Clause :- literal(VARX, term), literal.

7

ILP Algorithm
Since we are using an iterative search for the
concept, we don’t want to lose any information
that we gained from the previous iteration.
Therefore, we can add a clause to the concept to
generalize, and add predicates to the body of a
clause to specialize it.
E.g.

“equal(X,Y) := X<=y.” -> “equal(X,Y) := (X<=Y), (X>=Y).”
“equal(X,Y) := X<Y.
equal(X,Y) := X>Y).”

Predicate/literal restrictions
1. Literals used in the background knowledge…

– whose arguments are a subset of those in the head of the
clause.

– that introduce a new distinct variable different from those in
the head of the clause.

2. A literal that equates a variable in the head of the
clause with another such variable or with a term
mentioned in the background knowledge.

3. A literal must contain at least one existing variable
4. A recursive literal with restrictions on it’s arguments

to prevent infinite recursion.

8

A basic ILP algorithm

Σ is the training set. Σcur is a subset of the training set
π is the concept we are learning.
C is the current clause in π that is being specialized.

Example

+
-

+

+

+

+

+
-

-

-

-

-

-

Starting set E

c1

Ecur c2

9

An Example Problem
We would like to find a logic program,
nonstop(X,Y) that will tell us if X to Y
is a nonstop flight.
We give the ILP a training set of pairs
of cities that have direct flights.
<A,C>,<B,C>,<B2,B>…etc.
We also give it background
information on the structure of the
map. Such as satellite(B2,B), and
hub(B).

Training set.
E+={AB, BA, B2B, BC, BB1, BB2, C2C}
E-={BC2, B2A2, A1C, AB2, …}

1. Initialize “nonstop(X,Y) :- true.”
2. Specialize, “nonstop(X,Y):- hub(X).”

• Covers some negatives {BC2, AB2, …}

3. Specialize, “nonstop(X,Y):-hub(X),hub(Y).”
• Positives not covered {B2B,BB1,C2C}

4. Set Ecur = {B2B,BB1,C2C} and E-

5. Generalize by adding another clause.
6. Specialize again on Ecur. “nonstop(X,Y):-satellite(X,Y).”

• This covers {B2B, C2C} but not {BB1, BB2}

7. Add “nonstop(X,Y):- satellite(Y,X).”
• Now all of the positives in the training set are classified, and

none of the negatives.

10

Choosing the Best Literal
At each step of the inner loop we need to choose a literal
from many possible literals. So we want the literal we
choose to be a good one.
We would like to maximize the probability that an example
drawn at random from those covered by the new clause is
positive.
This means that to test a literal we need to run the
interpreter on the new clause.

quality = (# positive examples covered) /
(total # covered).

Recursion
This algorithm can work with recursive clauses, if we are
careful about what recursive literals we allow.
This type of clause must be avoided.
recur_forever(X,Y) :- recur_forever(X,Y).

This clause will work
less_than(X,Y) :- add_1(X,Z), less_than(Z,Y).

• x<y if there exists a z=x+1, and z<y.

If we require that there is a partial ordering on an argument
of the recursive literal, established by the previous literals.
Of course a base case would also be good to have.

11

Post-processing
It is possible that some of the literals that
are generated end up being necessary.
If we eliminate such literals the program
can be made more general.
A simple way to get rid of useless literals is
to test all of the literals against the data. We
just check to see if removing a literal will
produce the same results.

Noise
If we have noise it is better to allow some negative
examples than to continue until all examples are
classified correctly.
In ILP, the decision to stop is based on the number
of bits needed to encode a clause vs the number of
bits needed to encode the examples covered by the
clause. A good clause should never need as many
bits as the examples.
Intuitively, if we end up with a literal for every
positive example we classify, the clause isn’t
usefull. If this happens we stop.

12

Bit Encoding
Number of bits needed to encode examples
is

• Number of bits needed to encode a clause is

Advantages of ILP
The biggest advantage ILP has over other machine
learning methods it that the results concept, or
concepts produced by an ILP algorithm can be
understood by the user.
Some data can better be described using
background logic rather than attribute, value pairs.
E.g. What if we want to induce a sorting
algorithm? This can be done with enough
background info.
Training data can be in the form of logic

13

Disadvantages
ILPs generate logic programs. Logic
programs can be slow or even intractable to
interpret.
ILPs have a fairly specific domain. ILP
would not be used for image recognition for
example.

Applications
Finite Element Mesh Design

used by engineers to analyze stresses in physical
structures. ILP was used to determine rules for the
mesh resolution of the structure in terms of certain
properties of the structure being modeled. Achieved
roughly 78% accuracy

Predictive Toxicology
ILP is used to develop a model for determining the
toxicity of drugs. In one application, ILP was used to
determine toxic molecule, and it’s chemical structure. It
was 88% accurate.

14

Applications
Generating Loop Invariants

An ILP system was used to generate loop invariants
and did so successfully and straightforwardly. The
induction of an invariant for a parallel program was
also demonstrated. Loop invariants are used help
determine the correctness of a program.

Protein Secondary Structure Prediction
The structure of a protein determines to some extent its
function. The application of the Golem ILP system to
this prediction task produced better results than any
contemporary learning approach.

Conclusion
ILP is a very different approach to machine suited
for a very different set of problems that traditional
approaches to ML.
ILP is useful in situations where the model that a
machine learns in order to classify data needs to
be understandable by an outside observer.
Although ILP could theoretically be applied to
almost any problem, it is too computationally
intense for many.

15

References
Introduction to Machine Learning, Ch. 7, Nills J. Nilsson.
http://ai.stanford.edu/people/nilsson/mlbook.html
Learning Logical Definitions from Relations, J.R. Quinlan
(1990)
Inductive Logic Programming: Techniques and
Applications. Nada Lavrac, Saso Dzerosky, (1994)
Inductive Logic Programming: theory and methods.
Stephen Muggleton, Luc De Raedt,
http://www.doc.ic.ac.uk/~sgc/teaching/v231/lecture14.html

